# Determiner-et-construire-l-ensemble-des-points-M-tel-que-3MA-2-MB-2-MC-2-42-Le-plan-est-muni-d-un-repere-orthonorme-O-I-J-A-1-2-B-2-3-C-1-9-on-considere-que-O-barycentre-A-3-B-1-

Question Number 77296 by mathocean1 last updated on 05/Jan/20
$$\mathrm{Determiner}\:\mathrm{et}\:\mathrm{construire}\:\mathrm{l}.\mathrm{ensemble} \\$$$$\mathrm{des}\:\mathrm{points}\:\mathrm{M}\:\mathrm{tel}\:\mathrm{que}: \\$$$$\mathrm{3MA}^{\mathrm{2}} +\mathrm{MB}^{\mathrm{2}} −\mathrm{MC}^{\mathrm{2}} =−\mathrm{42} \\$$$$\mathrm{Le}\:\mathrm{plan}\:\mathrm{est}\:\mathrm{muni}\:\mathrm{d}.\mathrm{un}\:\mathrm{repere}\: \\$$$$\mathrm{orthonorme}\:\left(\mathrm{O},\mathrm{I},\mathrm{J}\right) \\$$$$\mathrm{A}\left(\mathrm{1},\mathrm{2}\right)\:\:\:\mathrm{B}\left(−\mathrm{2},\mathrm{3}\right)\:\:\mathrm{C}\left(\mathrm{1},\mathrm{9}\right). \\$$$$\mathrm{on}\:\mathrm{considere}\:\mathrm{que}\: \\$$$$\mathrm{O}=\mathrm{barycentre}\left\{\left(\mathrm{A},\mathrm{3}\right);\left(\mathrm{B};\mathrm{1}\right);\left(\mathrm{C};−\mathrm{1}\right)\right\} \\$$
Commented by mathocean1 last updated on 05/Jan/20
$$\mathrm{please}'\:\mathrm{help}\:\mathrm{me} \\$$
Commented by jagoll last updated on 05/Jan/20
$$\mathrm{what}\:\mathrm{language}\:\mathrm{is}\:\mathrm{this}\:\mathrm{sir}? \\$$
Commented by MJS last updated on 05/Jan/20
$$\mathrm{French} \\$$$$\mathrm{could}\:\mathrm{someone}\:\mathrm{translate}\:\mathrm{to}\:\mathrm{English}\:\mathrm{please} \\$$
Commented by mathmax by abdo last updated on 05/Jan/20
$${detemine}\:{and}\:{construct}\:{the}\:{set}\:{of}\:{points}\:{M}\:{wich}\:{verify} \\$$$$\mathrm{3}{MA}^{\mathrm{2}} \:+{MB}^{\mathrm{2}} −{MC}^{\mathrm{2}} =−\mathrm{42}\:\:{the}\:{plan}\:{is}\:{provided}\:{with}\:{a}\:{orthonormal} \\$$$${reference}\:\left({or}\:{repere}\right)\:\left(\mathrm{0},{i},{j}\right)\:{let}\:{A}\left(\mathrm{1},\mathrm{2}\right),{B}\left(−\mathrm{2},\mathrm{3}\right)\:{and}\:{C}\left(\mathrm{1},\mathrm{9}\right) \\$$$${for}\:{that}\:{consider}\:{the}\:{barycentre}\:{of}\:{the}\:{systeme}\: \\$$$$\left\{\left({A},\mathrm{3}\right),\left({B},\mathrm{1}\right)\:,\left({C},−\mathrm{1}\right)\right\} \\$$