Question Number 84902 by john santu last updated on 17/Mar/20
![lim_(x→∞) (5^x +5^(2x) )^(1/x) ?](https://www.tinkutara.com/question/Q84902.png)
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{5}^{\mathrm{x}} +\mathrm{5}^{\mathrm{2x}} \right)\:^{\frac{\mathrm{1}}{\mathrm{x}}} \:? \\ $$
Commented by john santu last updated on 17/Mar/20
![lim_(x→∞) (((5^x +5^(2x) )/5^(2x) )×5^(2x) )^(1/x) = 5^2 × lim_(x→∞) (1+(1/5^x ))^(1/x) = 25 × e^(lim_(x→∞) (1+(1/5^x )−1).(1/x)) = 25 × e^0 = 25 ×1 = 25](https://www.tinkutara.com/question/Q84903.png)
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{5}^{\mathrm{x}} +\mathrm{5}^{\mathrm{2x}} }{\mathrm{5}^{\mathrm{2x}} }×\mathrm{5}^{\mathrm{2x}} \right)^{\frac{\mathrm{1}}{\mathrm{x}}} \:=\: \\ $$$$\mathrm{5}^{\mathrm{2}} \:×\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{x}} }\right)^{\frac{\mathrm{1}}{\mathrm{x}}} =\: \\ $$$$\mathrm{25}\:×\:\mathrm{e}^{\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{x}} }−\mathrm{1}\right).\frac{\mathrm{1}}{\mathrm{x}}} \:= \\ $$$$\mathrm{25}\:×\:\mathrm{e}^{\mathrm{0}} \:=\:\mathrm{25}\:×\mathrm{1}\:=\:\mathrm{25} \\ $$
Commented by mathmax by abdo last updated on 17/Mar/20
![let f(x)=(5^x +5^(2x) )^(1/x) ⇒f(x)=e^((1/x)ln(5^(2x) +5^x )) =e^((1/x)(2x)ln(5) +ln(1+5^(−x) )) =25 e^(ln(1+5^(−x) )) ⇒f(x)∼25 e^5^(−x) →25 (x→+∞) ⇒lim_(x→+∞) f(x)=25](https://www.tinkutara.com/question/Q84936.png)
$${let}\:{f}\left({x}\right)=\left(\mathrm{5}^{{x}} \:+\mathrm{5}^{\mathrm{2}{x}} \right)^{\frac{\mathrm{1}}{{x}}} \:\Rightarrow{f}\left({x}\right)={e}^{\frac{\mathrm{1}}{{x}}{ln}\left(\mathrm{5}^{\mathrm{2}{x}} \:+\mathrm{5}^{{x}} \right)} \\ $$$$={e}^{\frac{\mathrm{1}}{{x}}\left(\mathrm{2}{x}\right){ln}\left(\mathrm{5}\right)\:+{ln}\left(\mathrm{1}+\mathrm{5}^{−{x}} \right)} \:=\mathrm{25}\:{e}^{{ln}\left(\mathrm{1}+\mathrm{5}^{−{x}} \right)} \:\Rightarrow{f}\left({x}\right)\sim\mathrm{25}\:{e}^{\mathrm{5}^{−{x}} } \rightarrow\mathrm{25}\:\left({x}\rightarrow+\infty\right) \\ $$$$\Rightarrow{lim}_{{x}\rightarrow+\infty} \:\:{f}\left({x}\right)=\mathrm{25} \\ $$