Menu Close

f-e-x-2-dx-e-t-2-dt-1-2-pi-erf-t-Const-e-t-2-dt-pi-0-




Question Number 214366 by issac last updated on 06/Dec/24
f(α)=∫_(−∞) ^( ∞)  e^(−αx^2 ) dx  ∫  e^(−αt^2 ) dt=(1/2)(√(π/α))∙erf((√α)t)+Const  ∴∫_(−∞) ^( ∞)  e^(−αt^2 ) dt=(√(π/α)) , α∈(0,∞)
$${f}\left(\alpha\right)=\int_{−\infty} ^{\:\infty} \:{e}^{−\alpha{x}^{\mathrm{2}} } \mathrm{d}{x} \\ $$$$\int\:\:{e}^{−\alpha{t}^{\mathrm{2}} } \mathrm{d}{t}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\pi}{\alpha}}\centerdot\mathrm{erf}\left(\sqrt{\alpha}{t}\right)+\mathrm{Const} \\ $$$$\therefore\int_{−\infty} ^{\:\infty} \:{e}^{−\alpha{t}^{\mathrm{2}} } \mathrm{d}{t}=\sqrt{\frac{\pi}{\alpha}}\:,\:\alpha\in\left(\mathrm{0},\infty\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *