Question Number 215248 by sudipyt44 last updated on 01/Jan/25
$$\frac{\mathrm{10}}{\mathrm{7}}\boldsymbol{\div}\frac{\mathrm{9}}{\mathrm{4}}×\frac{\mathrm{21}}{\mathrm{8}} \\ $$
Commented by A5T last updated on 01/Jan/25
$$\left(\mathrm{a}\boldsymbol{\div}\mathrm{b}\right)×\mathrm{c}=\frac{\mathrm{ac}}{\mathrm{b}} \\ $$$$\mathrm{a}\boldsymbol{\div}\left(\mathrm{b}×\mathrm{c}\right)=\frac{\mathrm{a}}{\mathrm{bc}} \\ $$
Answered by MrGaster last updated on 01/Jan/25
$$\frac{\mathrm{10}}{\mathrm{7}}×\frac{\mathrm{4}}{\mathrm{9}}×\frac{\mathrm{21}}{\mathrm{8}} \\ $$$$=\frac{\mathrm{5}×\mathrm{4}×\mathrm{3}}{\mathrm{9}×\mathrm{4}} \\ $$$$=\frac{\mathrm{5}×\mathrm{3}}{\mathrm{9}} \\ $$$$=\frac{\mathrm{15}}{\mathrm{9}} \\ $$$$=\frac{\mathrm{5}}{\mathrm{3}} \\ $$
Answered by mahdipoor last updated on 01/Jan/25
$$\mathrm{Order}\:\mathrm{of}\:\mathrm{mathematical}\:\mathrm{operations} \\ $$$$\mathrm{1}.\:\left(\right) \\ $$$$\mathrm{2}.\:×,/ \\ $$$$\mathrm{3}.\:+,− \\ $$$$\mathrm{4}.\:{Left}\:{to}\:{Right} \\ $$$$ \\ $$$$\frac{\mathrm{10}}{\mathrm{7}}/\frac{\mathrm{9}}{\mathrm{4}}×\frac{\mathrm{21}}{\mathrm{8}}=\left(\left(\frac{\mathrm{10}}{\mathrm{7}}/\frac{\mathrm{9}}{\mathrm{4}}\right)×\frac{\mathrm{21}}{\mathrm{8}}\right)=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$ \\ $$