Question Number 215498 by alephnull last updated on 08/Jan/25
$$\int\left({e}^{−\omega{u}} +\mathrm{cos}\left({u}\right)−\frac{\mathrm{sin}\left(\omega{u}\right)}{{e}^{{u}} }\right){du} \\ $$
Answered by MathematicalUser2357 last updated on 10/Jan/25
$$−\frac{{e}^{−{u}\omega} }{\omega}+\frac{{e}^{−{u}} \mathrm{sin}\:{u}\omega}{\left(\omega−{i}\right)\left(\omega+{i}\right)}+\frac{{e}^{−{u}} \omega\mathrm{cos}\:{u}\omega}{\left(\omega−{i}\right)\left(\omega+{i}\right)}+\mathrm{sin}\:{u}+{C} \\ $$$${e}^{−{u}} \left(\frac{\mathrm{sin}\:{u}\omega}{\omega^{\mathrm{2}} +\mathrm{1}}+\frac{\omega\mathrm{cos}\:{u}\omega}{\omega^{\mathrm{2}} +\mathrm{1}}\right)−\frac{{e}^{−{u}\omega} }{\omega}+\mathrm{sin}\:{u}+{C} \\ $$$$\frac{{e}^{−{u}} \mathrm{sin}\:{u}\omega}{\omega^{\mathrm{2}} +\mathrm{1}}+\frac{{e}^{−{u}} \omega\mathrm{cos}\:{u}\omega}{\omega^{\mathrm{2}} +\mathrm{1}}−\frac{{e}^{−{u}\omega} }{\omega}+\mathrm{sin}\:{u}+{C} \\ $$$$\frac{\left(\omega^{\mathrm{2}} +\mathrm{1}\right)\left(\omega\mathrm{sin}\:{u}−{e}^{−{u}\omega} \right)+{e}^{−{u}} \omega^{\mathrm{2}} \mathrm{cos}\:{u}\omega+{e}^{−{u}} \omega\mathrm{sin}\:{u}\omega}{\omega\left(\omega^{\mathrm{2}} +\mathrm{1}\right)}+{C} \\ $$$$\mathrm{The}\:\mathrm{last}\:\mathrm{two}\:\mathrm{similar}\:\mathrm{expressions}\:\mathrm{are}\:\mathrm{too}\:\mathrm{long}+{C} \\ $$
Answered by mr W last updated on 10/Jan/25
$${I}=\int\frac{\mathrm{sin}\:\left(\omega{u}\right)}{{e}^{{u}} }{du} \\ $$$${I}=−\frac{\mathrm{1}}{\omega}\int\frac{\mathrm{1}}{{e}^{{u}} }{d}\left(\mathrm{cos}\:\left(\omega{u}\right)\right) \\ $$$${I}=−\frac{\mathrm{1}}{\omega}\left[\frac{\mathrm{cos}\:\left(\omega{u}\right)}{{e}^{{u}} }+\int\frac{\mathrm{cos}\:\left(\omega{u}\right){du}}{{e}^{{u}} }\right] \\ $$$${I}=−\frac{\mathrm{1}}{\omega}\left[\frac{\mathrm{cos}\:\left(\omega{u}\right)}{{e}^{{u}} }+\frac{\mathrm{1}}{\omega}\int\frac{{d}\left(\mathrm{sin}\:\left(\omega{u}\right)\right.}{{e}^{{u}} }\right] \\ $$$${I}=−\frac{\mathrm{1}}{\omega}\left[\frac{\mathrm{cos}\:\left(\omega{u}\right)}{{e}^{{u}} }+\frac{\mathrm{1}}{\omega}×\frac{\mathrm{sin}\:\left(\omega{u}\right)}{{e}^{{u}} }+\frac{\mathrm{1}}{\omega}\int\frac{\mathrm{sin}\:\left(\omega{u}\right)}{{e}^{{u}} }{du}\right] \\ $$$${I}=−\frac{\mathrm{1}}{\omega^{\mathrm{2}} }\left[\frac{\mathrm{sin}\:\left(\omega{u}\right)+\omega\:\mathrm{cos}\:\left(\omega{u}\right)}{{e}^{{u}} }+{I}\right] \\ $$$$\left(\omega^{\mathrm{2}} +\mathrm{1}\right){I}=−\frac{\mathrm{sin}\:\left(\omega{u}\right)+\omega\:\mathrm{cos}\:\left(\omega{u}\right)}{{e}^{{u}} } \\ $$$$\Rightarrow{I}=\int\frac{\mathrm{sin}\:\left(\omega{u}\right)}{{e}^{{u}} }{du}=−\frac{\mathrm{sin}\:\left(\omega{u}\right)+\omega\:\mathrm{cos}\:\left(\omega{u}\right)}{\left(\omega^{\mathrm{2}} +\mathrm{1}\right){e}^{{u}} } \\ $$$$ \\ $$$$\int\left({e}^{−\omega{u}} +\mathrm{cos}\:\left({u}\right)−\frac{\mathrm{sin}\:\left(\omega{u}\right)}{{e}^{{u}} }\right){du} \\ $$$$=\int{e}^{−\omega{u}} {du}+\int\mathrm{cos}\:\left({u}\right){du}−\int\frac{\mathrm{sin}\:\left(\omega{u}\right)}{{e}^{{u}} }{du} \\ $$$$=−\frac{{e}^{−\omega{u}} }{\omega}+\mathrm{sin}\:{u}−\int\frac{\mathrm{sin}\:\left(\omega{u}\right)}{{e}^{{u}} }{du} \\ $$$$=−\frac{{e}^{−\omega{u}} }{\omega}+\mathrm{sin}\:{u}+\frac{\mathrm{sin}\:\left(\omega{u}\right)+\omega\:\mathrm{cos}\:\left(\omega{u}\right)}{\left(\omega^{\mathrm{2}} +\mathrm{1}\right){e}^{{u}} }+{C} \\ $$
Commented by alephnull last updated on 10/Jan/25
$${thank} \\ $$$$ \\ $$