Question Number 215528 by alephnull last updated on 09/Jan/25
Commented by mr W last updated on 10/Jan/25
$${this}\:{is}\:{not}\:{a}\:{question},\:{actually}\:{pure} \\ $$$${non}−{sense}\:{with}\:{a}\:{lot}\:{of} \\ $$$${mathematical}\:{symbols}\:{stacked} \\ $$$${together}. \\ $$$${or}\:{what}\:{do}\:{you}\:{want}\:{with}\:{it}? \\ $$
Commented by alephnull last updated on 10/Jan/25
$$ \\ $$$$\mathrm{sorry}\::\left(\right. \\ $$
Answered by issac last updated on 10/Jan/25
$$\frac{{x}}{{y}_{{i}} }\centerdot\frac{{y}}{{x}_{{i}} }\centerdot\frac{{u}}{{xy}}\centerdot\frac{\omega}{{x}}\centerdot\frac{{e}}{\omega}= \\ $$$$\frac{{x}}{{y}_{{i}} }\centerdot\frac{\mathrm{1}}{{x}_{{i}} }\centerdot\frac{{u}}{{x}}\centerdot\frac{{e}}{{x}}=\frac{{eu}}{{xx}_{{i}} {y}_{{i}} }\:\:\checkmark \\ $$
Commented by MathematicalUser2357 last updated on 10/Jan/25
$$\partial\:\mathrm{is}\:\mathrm{a}\:\mathrm{partial}\:\mathrm{differential}\:\mathrm{operator} \\ $$
Commented by alephnull last updated on 10/Jan/25
$${thNks} \\ $$
Commented by MathematicalUser2357 last updated on 10/Jan/25
$$@\mathrm{alephnull}\:\mathrm{He}/\mathrm{She}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{the}\:\partial\:\mathrm{means} \\ $$
Answered by MathematicalUser2357 last updated on 10/Jan/25
$$\mathrm{0} \\ $$