Menu Close

Two-friends-set-off-by-train-at-dawn-to-visit-each-other-The-two-friends-caught-sight-of-each-other-through-the-window-as-the-trains-passed-in-opposite-direction-on-adjacent-tracks-




Question Number 215523 by Ismoiljon_008 last updated on 09/Jan/25
     Two friends set off  by train at dawn to visit     each other. The two friends caught sight of     each other through the window as the trains      passed in opposite direction on adjacent tracks−     it was 12^(oo)  hours. The friends helplessly reached      their destinations. If the first of them reached      their destination at 16^(oo)  and the second at 21^(oo) ,     what time did dawn break on that day ?     Help me, please
$$ \\ $$$$\:\:\:\mathcal{T}{wo}\:{friends}\:{set}\:{off}\:\:{by}\:{train}\:{at}\:{dawn}\:{to}\:{visit} \\ $$$$\:\:\:{each}\:{other}.\:{The}\:{two}\:{friends}\:{caught}\:{sight}\:{of} \\ $$$$\:\:\:{each}\:{other}\:{through}\:{the}\:{window}\:{as}\:{the}\:{trains}\: \\ $$$$\:\:\:{passed}\:{in}\:{opposite}\:{direction}\:{on}\:{adjacent}\:{tracks}− \\ $$$$\:\:\:{it}\:{was}\:\mathrm{12}^{{oo}} \:{hours}.\:{The}\:{friends}\:{helplessly}\:{reached}\: \\ $$$$\:\:\:{their}\:{destinations}.\:{If}\:{the}\:{first}\:{of}\:{them}\:{reached}\: \\ $$$$\:\:\:{their}\:{destination}\:{at}\:\mathrm{16}^{{oo}} \:{and}\:{the}\:{second}\:{at}\:\mathrm{21}^{{oo}} , \\ $$$$\:\:\:{what}\:{time}\:{did}\:{dawn}\:{break}\:{on}\:{that}\:{day}\:? \\ $$$$\:\:\:{Help}\:{me},\:{please} \\ $$
Commented by nikif99 last updated on 09/Jan/25
Commented by mr W last updated on 10/Jan/25
great translation for the unclear  question!
$${great}\:{translation}\:{for}\:{the}\:{unclear} \\ $$$${question}! \\ $$
Answered by nikif99 last updated on 09/Jan/25
  Let t the dawn.   [12:00]⇒v_1 =(a/(12−t)), v_2 =((s−a)/(12−t))  [16:00]⇒ v_1 =(s/(16−t)), [16:00−12:00]⇒v_1 =((s−a)/4)  [21:00]⇒ v_2 =(s/(21−t)), [21:00−12:00]⇒v_2 =(a/9)  (v_1 /v_2 )=((9(s−a))/(4a))=(a/(s−a))=((21−t)/(16−t)) (1)  (1)⇒9(s−a)^2 =4a^2 ⇒5a^2 −18sa+9s^2 =0⇒  a_(1,2) =((18s±(√(18^2 s^2 −4×5×9s^2 )))/(2×5))=3s or ((3s)/5)  (1)⇒a(16−t)=(s−a)(21−t)⇒  37a−2at−21s+st=0⇒t=((37a−21s)/(2a−s))  for a_1 =3s⇒t=18:00h rejected  for a_2 =((3s)/5)⇒t=6:00 accepted
$$ \\ $$$${Let}\:{t}\:{the}\:{dawn}.\: \\ $$$$\left[\mathrm{12}:\mathrm{00}\right]\Rightarrow{v}_{\mathrm{1}} =\frac{{a}}{\mathrm{12}−{t}},\:{v}_{\mathrm{2}} =\frac{{s}−{a}}{\mathrm{12}−{t}} \\ $$$$\left[\mathrm{16}:\mathrm{00}\right]\Rightarrow\:{v}_{\mathrm{1}} =\frac{{s}}{\mathrm{16}−{t}},\:\left[\mathrm{16}:\mathrm{00}−\mathrm{12}:\mathrm{00}\right]\Rightarrow{v}_{\mathrm{1}} =\frac{{s}−{a}}{\mathrm{4}} \\ $$$$\left[\mathrm{21}:\mathrm{00}\right]\Rightarrow\:{v}_{\mathrm{2}} =\frac{{s}}{\mathrm{21}−{t}},\:\left[\mathrm{21}:\mathrm{00}−\mathrm{12}:\mathrm{00}\right]\Rightarrow{v}_{\mathrm{2}} =\frac{{a}}{\mathrm{9}} \\ $$$$\frac{{v}_{\mathrm{1}} }{{v}_{\mathrm{2}} }=\frac{\mathrm{9}\left({s}−{a}\right)}{\mathrm{4}{a}}=\frac{{a}}{{s}−{a}}=\frac{\mathrm{21}−{t}}{\mathrm{16}−{t}}\:\left(\mathrm{1}\right) \\ $$$$\left(\mathrm{1}\right)\Rightarrow\mathrm{9}\left({s}−{a}\right)^{\mathrm{2}} =\mathrm{4}{a}^{\mathrm{2}} \Rightarrow\mathrm{5}{a}^{\mathrm{2}} −\mathrm{18}{sa}+\mathrm{9}{s}^{\mathrm{2}} =\mathrm{0}\Rightarrow \\ $$$${a}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{18}{s}\pm\sqrt{\mathrm{18}^{\mathrm{2}} {s}^{\mathrm{2}} −\mathrm{4}×\mathrm{5}×\mathrm{9}{s}^{\mathrm{2}} }}{\mathrm{2}×\mathrm{5}}=\mathrm{3}{s}\:{or}\:\frac{\mathrm{3}{s}}{\mathrm{5}} \\ $$$$\left(\mathrm{1}\right)\Rightarrow{a}\left(\mathrm{16}−{t}\right)=\left({s}−{a}\right)\left(\mathrm{21}−{t}\right)\Rightarrow \\ $$$$\mathrm{37}{a}−\mathrm{2}{at}−\mathrm{21}{s}+{st}=\mathrm{0}\Rightarrow{t}=\frac{\mathrm{37}{a}−\mathrm{21}{s}}{\mathrm{2}{a}−{s}} \\ $$$${for}\:{a}_{\mathrm{1}} =\mathrm{3}{s}\Rightarrow{t}=\mathrm{18}:\mathrm{00}{h}\:{rejected} \\ $$$${for}\:{a}_{\mathrm{2}} =\frac{\mathrm{3}{s}}{\mathrm{5}}\Rightarrow{t}=\mathrm{6}:\mathrm{00}\:{accepted} \\ $$
Commented by Ismoiljon_008 last updated on 10/Jan/25
  thank you very much
$$\:\:{thank}\:{you}\:{very}\:{much} \\ $$
Answered by mr W last updated on 10/Jan/25
Commented by mr W last updated on 10/Jan/25
this is the time distance diagram   for both trains.  (x/4)=((4+5)/x)  ⇒x^2 =4×9=36 ⇒x=6 h  ?=12−6=6  i.e. the dawn breaks at 6 o′clock.
$${this}\:{is}\:{the}\:{time}\:{distance}\:{diagram}\: \\ $$$${for}\:{both}\:{trains}. \\ $$$$\frac{{x}}{\mathrm{4}}=\frac{\mathrm{4}+\mathrm{5}}{{x}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} =\mathrm{4}×\mathrm{9}=\mathrm{36}\:\Rightarrow{x}=\mathrm{6}\:{h} \\ $$$$?=\mathrm{12}−\mathrm{6}=\mathrm{6} \\ $$$${i}.{e}.\:{the}\:{dawn}\:{breaks}\:{at}\:\mathrm{6}\:{o}'{clock}. \\ $$
Commented by mr W last updated on 10/Jan/25
additional question:  say both trains take a pause of   2 hours and then go back. at what  time can the friends “see” each   other again through the windows?
$${additional}\:{question}: \\ $$$${say}\:{both}\:{trains}\:{take}\:{a}\:{pause}\:{of}\: \\ $$$$\mathrm{2}\:{hours}\:{and}\:{then}\:{go}\:{back}.\:{at}\:{what} \\ $$$${time}\:{can}\:{the}\:{friends}\:“{see}''\:{each}\: \\ $$$${other}\:{again}\:{through}\:{the}\:{windows}? \\ $$
Commented by mr W last updated on 10/Jan/25
Commented by mr W last updated on 10/Jan/25
say they “see” each other y hours   after 23^(00) .  (y/(15−y))=((5−y)/(5+y))  ⇒y=3  ?=23^(00) +3=2^(00)   i.e. the friends see each other again   at 2 o′clock on next day.
$${say}\:{they}\:“{see}''\:{each}\:{other}\:{y}\:{hours}\: \\ $$$${after}\:\mathrm{23}^{\mathrm{00}} . \\ $$$$\frac{{y}}{\mathrm{15}−{y}}=\frac{\mathrm{5}−{y}}{\mathrm{5}+{y}} \\ $$$$\Rightarrow{y}=\mathrm{3} \\ $$$$?=\mathrm{23}^{\mathrm{00}} +\mathrm{3}=\mathrm{2}^{\mathrm{00}} \\ $$$${i}.{e}.\:{the}\:{friends}\:{see}\:{each}\:{other}\:{again}\: \\ $$$${at}\:\mathrm{2}\:{o}'{clock}\:{on}\:{next}\:{day}. \\ $$
Commented by mr W last updated on 10/Jan/25
following is an example how a time  distance diagram for real train   traffic may look like.
$${following}\:{is}\:{an}\:{example}\:{how}\:{a}\:{time} \\ $$$${distance}\:{diagram}\:{for}\:{real}\:{train}\: \\ $$$${traffic}\:{may}\:{look}\:{like}. \\ $$
Commented by mr W last updated on 10/Jan/25
Commented by Ismoiljon_008 last updated on 10/Jan/25
  thank you very much
$$\:\:{thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *