Menu Close

log-24-3-a-and-log-24-6-b-6-log-8-b-4a-




Question Number 215840 by golsendro last updated on 19/Jan/25
   log _(24)  3= a and log _(24)  6 = (b/6)     log _(√8)  (b−4a)= ?
$$\:\:\:\mathrm{log}\:_{\mathrm{24}} \:\mathrm{3}=\:{a}\:\mathrm{and}\:\mathrm{log}\:_{\mathrm{24}} \:\mathrm{6}\:=\:\frac{{b}}{\mathrm{6}} \\ $$$$\:\:\:\mathrm{log}\:_{\sqrt{\mathrm{8}}} \:\left({b}−\mathrm{4}{a}\right)=\:? \\ $$
Commented by oubiji last updated on 19/Jan/25
    b−4a=log_(24) 6^6 −log_(24) 3^4                   =log_(24) (6^6 /3^4 )                  =log_(24) 24^2                   = 2     then :       log_(√8) (b−4a)=log_(√8) 2                                =((ln2)/(ln(√8)))                                =((ln2)/((3/2)ln2))                               =(2/3)
$$\:\:\:\:{b}−\mathrm{4}{a}=\mathrm{log}_{\mathrm{24}} \mathrm{6}^{\mathrm{6}} −{log}_{\mathrm{24}} \mathrm{3}^{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={log}_{\mathrm{24}} \frac{\mathrm{6}^{\mathrm{6}} }{\mathrm{3}^{\mathrm{4}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={log}_{\mathrm{24}} \mathrm{24}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{2} \\ $$$$\:\:\:{then}\:: \\ $$$$\:\:\:\:\:{log}_{\sqrt{\mathrm{8}}} \left({b}−\mathrm{4}{a}\right)={log}_{\sqrt{\mathrm{8}}} \mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{ln}\mathrm{2}}{{ln}\sqrt{\mathrm{8}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{ln}\mathrm{2}}{\frac{\mathrm{3}}{\mathrm{2}}{ln}\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Rasheed.Sindhi last updated on 20/Jan/25
please next time  post your solution as   “answer” not as a “comment”
$${please}\:{next}\:{time}\:\:{post}\:{your}\:{solution}\:{as}\: \\ $$$$“{answer}''\:{not}\:{as}\:{a}\:“{comment}'' \\ $$
Answered by A5T last updated on 19/Jan/25
b=log_(24) 6^6   ;    4a=log_(24) 3^4   b−4a=log_(24) ((6^6 /3^4 ))=log_(24) (24^2 )=2  ⇒log_(√8) (b−4a)⇒log_(√8) (2)=log_2^(3/2)  (2)=(2/3)
$$\mathrm{b}=\mathrm{log}_{\mathrm{24}} \mathrm{6}^{\mathrm{6}} \:\:;\:\:\:\:\mathrm{4a}=\mathrm{log}_{\mathrm{24}} \mathrm{3}^{\mathrm{4}} \\ $$$$\mathrm{b}−\mathrm{4a}=\mathrm{log}_{\mathrm{24}} \left(\frac{\mathrm{6}^{\mathrm{6}} }{\mathrm{3}^{\mathrm{4}} }\right)=\mathrm{log}_{\mathrm{24}} \left(\mathrm{24}^{\mathrm{2}} \right)=\mathrm{2} \\ $$$$\Rightarrow\mathrm{log}_{\sqrt{\mathrm{8}}} \left(\mathrm{b}−\mathrm{4a}\right)\Rightarrow\mathrm{log}_{\sqrt{\mathrm{8}}} \left(\mathrm{2}\right)=\mathrm{log}_{\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{2}}} } \left(\mathrm{2}\right)=\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Answered by MathematicalUser2357 last updated on 26/Jan/25
log_(√8) (6×log_(24) 6−log_(24) 3)  FAILED TO CALCULATE  why do tinku tara can′t do log_b x
$$\mathrm{log}_{\sqrt{\mathrm{8}}} \left(\mathrm{6}×\mathrm{log}_{\mathrm{24}} \mathrm{6}−\mathrm{log}_{\mathrm{24}} \mathrm{3}\right) \\ $$$$\mathrm{FAILED}\:\mathrm{TO}\:\mathrm{CALCULATE} \\ $$$$\mathrm{why}\:\mathrm{do}\:\mathrm{tinku}\:\mathrm{tara}\:\mathrm{can}'\mathrm{t}\:\mathrm{do}\:\mathrm{log}_{{b}} {x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *