Menu Close

Question-216593




Question Number 216593 by Tawa11 last updated on 11/Feb/25
Answered by A5T last updated on 11/Feb/25
At vertex,  (dy/dx)=2ax+b=0⇒18a+b=0⇒b=−18a  −14=81a+9b+c  ⇒c=−14+81a  ⇒a+b+c=a−18a−14+81a=64a−14  (d^2 y/dx^2 )=2a>0⇒a>0  64a−14=v⇒a=((v+14)/(64))>0⇒v>−14  ⇒a+b+c=v>−14 ⇒ D)
$$\mathrm{At}\:\mathrm{vertex},\:\:\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{2ax}+\mathrm{b}=\mathrm{0}\Rightarrow\mathrm{18a}+\mathrm{b}=\mathrm{0}\Rightarrow\mathrm{b}=−\mathrm{18a} \\ $$$$−\mathrm{14}=\mathrm{81a}+\mathrm{9b}+\mathrm{c} \\ $$$$\Rightarrow\mathrm{c}=−\mathrm{14}+\mathrm{81a} \\ $$$$\Rightarrow\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{a}−\mathrm{18a}−\mathrm{14}+\mathrm{81a}=\mathrm{64a}−\mathrm{14} \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }=\mathrm{2a}>\mathrm{0}\Rightarrow\mathrm{a}>\mathrm{0} \\ $$$$\mathrm{64a}−\mathrm{14}=\mathrm{v}\Rightarrow\mathrm{a}=\frac{\mathrm{v}+\mathrm{14}}{\mathrm{64}}>\mathrm{0}\Rightarrow\mathrm{v}>−\mathrm{14} \\ $$$$\left.\Rightarrow\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{v}>−\mathrm{14}\:\Rightarrow\:\mathrm{D}\right) \\ $$
Commented by Tawa11 last updated on 12/Feb/25
Thanks sir, I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by mr W last updated on 12/Feb/25
y=ax^2 +bx+c=a(x+(b/(2a)))^2 +c−(b^2 /(4a))  a>0   (⌣)  (b/(2a))=−9 ⇒b=−18a  c−(b^2 /(4a))=−14 ⇒c=−14+a((b/(2a)))^2 =−14+81a  k=a+b+c     =a−18a−14+81a     =64a−14     >−14  ⇒only D) −12 is possible
$${y}={ax}^{\mathrm{2}} +{bx}+{c}={a}\left({x}+\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} +{c}−\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}} \\ $$$${a}>\mathrm{0}\:\:\:\left(\smallsmile\right) \\ $$$$\frac{{b}}{\mathrm{2}{a}}=−\mathrm{9}\:\Rightarrow{b}=−\mathrm{18}{a} \\ $$$${c}−\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}}=−\mathrm{14}\:\Rightarrow{c}=−\mathrm{14}+{a}\left(\frac{{b}}{\mathrm{2}{a}}\right)^{\mathrm{2}} =−\mathrm{14}+\mathrm{81}{a} \\ $$$${k}={a}+{b}+{c} \\ $$$$\:\:\:={a}−\mathrm{18}{a}−\mathrm{14}+\mathrm{81}{a} \\ $$$$\:\:\:=\mathrm{64}{a}−\mathrm{14} \\ $$$$\:\:\:>−\mathrm{14} \\ $$$$\left.\Rightarrow{only}\:{D}\right)\:−\mathrm{12}\:{is}\:{possible} \\ $$
Commented by Tawa11 last updated on 12/Feb/25
Thanks sir, I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *