Menu Close

Find-dx-24x-16x-2-8-




Question Number 217225 by hardmath last updated on 06/Mar/25
Find:     ∫ − (dx/( (√(24x − 16x^2  − 8)))) = ?
$$\mathrm{Find}:\:\:\:\:\:\int\:−\:\frac{{d}\mathrm{x}}{\:\sqrt{\mathrm{24x}\:−\:\mathrm{16x}^{\mathrm{2}} \:−\:\mathrm{8}}}\:=\:? \\ $$
Answered by Frix last updated on 06/Mar/25
−∫(dx/( (√(−16x^2 +24x−8)))) =^([t=sin^(−1)  (4x−3)])   =−(1/4)∫dt=−(t/4)=−((sin^(−1)  (4x−3))/4)+C
$$−\int\frac{{dx}}{\:\sqrt{−\mathrm{16}{x}^{\mathrm{2}} +\mathrm{24}{x}−\mathrm{8}}}\:\overset{\left[{t}=\mathrm{sin}^{−\mathrm{1}} \:\left(\mathrm{4}{x}−\mathrm{3}\right)\right]} {=} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\int{dt}=−\frac{{t}}{\mathrm{4}}=−\frac{\mathrm{sin}^{−\mathrm{1}} \:\left(\mathrm{4}{x}−\mathrm{3}\right)}{\mathrm{4}}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *