Question Number 217228 by Tawa11 last updated on 06/Mar/25

Answered by mr W last updated on 06/Mar/25

$${I}=\frac{{mr}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${KE}=\frac{{I}\omega^{\mathrm{2}} }{\mathrm{2}}+\frac{{m}\left({r}\omega\right)^{\mathrm{2}} }{\mathrm{2}}=\frac{{I}\omega^{\mathrm{2}} }{\mathrm{2}}+{I}\omega^{\mathrm{2}} =\frac{\mathrm{3}{I}\omega^{\mathrm{2}} }{\mathrm{2}} \\ $$
Commented by Tawa11 last updated on 06/Mar/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by Wuji last updated on 06/Mar/25

$$\mathrm{v}=\omega\mathrm{R} \\ $$$$\mathrm{K}_{\mathrm{trans}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Mv}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{M}\left(\omega\mathrm{R}\right)^{\mathrm{2}} \\ $$$$\mathrm{K}_{\mathrm{rot}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{I}\omega^{\mathrm{2}} \\ $$$$\mathrm{K}_{\mathrm{total}} =\mathrm{K}_{\mathrm{trans}} +\mathrm{K}_{\mathrm{rot}} \:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{M}\left(\omega\mathrm{R}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{I}\omega^{\mathrm{2}} \\ $$$$\mathrm{K}_{\mathrm{total}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{M}\omega^{\mathrm{2}} \mathrm{R}^{\mathrm{2}} +\mathrm{I}\omega^{\mathrm{2}} \right)=\frac{\mathrm{1}}{\mathrm{2}}\omega^{\mathrm{2}} \left(\mathrm{MR}^{\mathrm{2}} +\mathrm{I}\right) \\ $$$$\mathrm{moment}\:\mathrm{of}\:\mathrm{inertial}\:\mathrm{about}\:\mathrm{its}\:\mathrm{central}\:\mathrm{axis} \\ $$$$\mathrm{I}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{MR}^{\mathrm{2}} \:\:\Rightarrow\mathrm{MR}^{\mathrm{2}} =\mathrm{2I} \\ $$$$\mathrm{K}_{\mathrm{total}} =\frac{\mathrm{1}}{\mathrm{2}}\omega^{\mathrm{2}} \left(\mathrm{2I}+\mathrm{I}\right)=\frac{\mathrm{1}}{\mathrm{2}}\omega^{\mathrm{2}} \left(\mathrm{3I}\right) \\ $$$$\mathrm{K}_{\mathrm{total}} =\frac{\mathrm{3}}{\mathrm{2}}\mathrm{I}\omega^{\mathrm{2}} \checkmark \\ $$
Commented by Tawa11 last updated on 06/Mar/25

$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$
Answered by MrGaster last updated on 07/Mar/25

$${K}.{E}.=\frac{\mathrm{1}}{\mathrm{2}}{I}\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{mv}^{\mathrm{2}} \\ $$$${v}=\omega{R} \\ $$$${K}.{E}.=\frac{\mathrm{1}}{\mathrm{2}}{I}\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{m}\left(\omega{R}\right)^{\mathrm{2}} \\ $$$${K}.{E}.=\frac{\mathrm{1}}{\mathrm{2}}{I}\omega^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{mR}^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$$\because{I}=\frac{\mathrm{1}}{\mathrm{2}}{mR}^{\mathrm{2}} \mathrm{for}\:\mathrm{a}\:\mathrm{solid}\:\mathrm{cylimder} \\ $$$${K}.{E}.=\frac{\mathrm{1}}{\mathrm{2}}\omega^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}{mR}^{\mathrm{2}} +{mR}^{\mathrm{2}} \right) \\ $$$${K}.{E}.=\frac{\mathrm{1}}{\mathrm{2}}\omega^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{2}}{mR}^{\mathrm{2}} \right) \\ $$$${K}.{E}.=\frac{\mathrm{3}}{\mathrm{4}}\:{mR}^{\mathrm{2}} \omega^{\mathrm{2}} \\ $$$${K}.{E}.=\frac{\mathrm{3}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}{mR}^{\mathrm{2}} \omega^{\mathrm{2}} \right) \\ $$$${K}.{E}.=\begin{array}{|c|}{\frac{\mathrm{3}}{\mathrm{2}}{I}\omega^{\mathrm{2}} }\\\hline\end{array} \\ $$