Menu Close

find-the-following-differential-equation-by-eliminating-the-arbritrary-constant-1-y-Ae-x-Bcosx-2-xy-Ae-x-Be-x-x-2-




Question Number 217245 by OmoloyeMichael last updated on 07/Mar/25
find the following differential equation   by eliminating the arbritrary constant  (1)y=Ae^x +Bcosx  (2) xy=Ae^x +Be^(−x) +x^2
$${find}\:{the}\:{following}\:{differential}\:{equation}\: \\ $$$${by}\:{eliminating}\:{the}\:{arbritrary}\:{constant} \\ $$$$\left(\mathrm{1}\right){y}={Ae}^{{x}} +{Bcosx} \\ $$$$\left(\mathrm{2}\right)\:{xy}={Ae}^{{x}} +{Be}^{−{x}} +{x}^{\mathrm{2}} \\ $$$$ \\ $$
Answered by aleks041103 last updated on 07/Mar/25
for example:  (1) y=Ae^x +Bcosx   y′=Ae^x −Bsinx  ⇒y−y′=Bcosx+Bsinx=z  z′′=−Bcosx−Bsinx=−z  ⇒(y−y′)′′+(y−y′)=0  ⇒y′′′−y′′+y′−y=0    (2)xy=Ae^x +Be^(−x) +x^2   ⇒z=xy−x^2 =Ae^x +Be^(−x)   z′′=Ae^x +Be^(−x) =z  ⇒(xy−x^2 )′′−(xy−x^2 )=0  (xy)′′−2−xy+x^2 =0  (y+xy′)′−xy=2−x^2   y′+y′+xy′′−xy=2−x^2   ⇒xy′′+2y′−xy=2−x^2
$${for}\:{example}: \\ $$$$\left(\mathrm{1}\right)\:{y}={Ae}^{{x}} +{Bcosx} \\ $$$$\:{y}'={Ae}^{{x}} −{Bsinx} \\ $$$$\Rightarrow{y}−{y}'={Bcosx}+{Bsinx}={z} \\ $$$${z}''=−{Bcosx}−{Bsinx}=−{z} \\ $$$$\Rightarrow\left({y}−{y}'\right)''+\left({y}−{y}'\right)=\mathrm{0} \\ $$$$\Rightarrow{y}'''−{y}''+{y}'−{y}=\mathrm{0} \\ $$$$ \\ $$$$\left(\mathrm{2}\right){xy}={Ae}^{{x}} +{Be}^{−{x}} +{x}^{\mathrm{2}} \\ $$$$\Rightarrow{z}={xy}−{x}^{\mathrm{2}} ={Ae}^{{x}} +{Be}^{−{x}} \\ $$$${z}''={Ae}^{{x}} +{Be}^{−{x}} ={z} \\ $$$$\Rightarrow\left({xy}−{x}^{\mathrm{2}} \right)''−\left({xy}−{x}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left({xy}\right)''−\mathrm{2}−{xy}+{x}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({y}+{xy}'\right)'−{xy}=\mathrm{2}−{x}^{\mathrm{2}} \\ $$$${y}'+{y}'+{xy}''−{xy}=\mathrm{2}−{x}^{\mathrm{2}} \\ $$$$\Rightarrow{xy}''+\mathrm{2}{y}'−{xy}=\mathrm{2}−{x}^{\mathrm{2}} \\ $$
Commented by aleks041103 last updated on 07/Mar/25
That is, if I have understood the question  correctly...
$${That}\:{is},\:{if}\:{I}\:{have}\:{understood}\:{the}\:{question} \\ $$$${correctly}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *