Question Number 217314 by Tawa11 last updated on 09/Mar/25

$$\mathrm{How}\:\mathrm{is}\:\:\:\psi^{\mathrm{2}} \left(\mathrm{1}\right)\:\:=\:\:−\:\:\mathrm{2}\zeta\left(\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\mathrm{and}\:\:\:\:\psi^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\:\:=\:\:\:−\:\:\mathrm{14}\zeta\left(\mathrm{3}\right)\:\:\:\:\:\:\:??? \\ $$
Commented by mr W last updated on 10/Mar/25

$${with}\:\psi^{\mathrm{2}} \left({x}\right)\:{do}\:{you}\:{mean}\:\left(\psi\left({x}\right)\right)^{\mathrm{2}} \:{or} \\ $$$$\psi^{\left(\mathrm{2}\right)} \left({x}\right)\:? \\ $$
Commented by Tawa11 last updated on 10/Mar/25

$$\mathrm{Polygamma}\:\mathrm{function}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 10/Mar/25

$${then}\:{the}\:{relationships}\:{are}\:{clear}. \\ $$
Commented by mr W last updated on 10/Mar/25

Commented by mr W last updated on 10/Mar/25

$${just}\:{take}\:{n}=\mathrm{2} \\ $$
Commented by Tawa11 last updated on 10/Mar/25

$$\mathrm{I}\:\mathrm{have}\:\mathrm{seen}\:\mathrm{what}\:\mathrm{I}\:\mathrm{needed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{image}\:\mathrm{you}\:\mathrm{sent}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}.\:\mathrm{It}\:\mathrm{really}\:\mathrm{helped}. \\ $$
Commented by Tawa11 last updated on 10/Mar/25

$$\mathrm{Sir},\:\mathrm{is}\:\mathrm{this}\:\mathrm{a}\:\mathrm{book}? \\ $$$$\mathrm{Can}\:\mathrm{I}\:\mathrm{get}\:\mathrm{more}\:\mathrm{functions}. \\ $$$$\mathrm{dealing}\:\mathrm{with}\:\mathrm{sum}\:\mathrm{and}\:\mathrm{integration}. \\ $$
Commented by Tawa11 last updated on 10/Mar/25

$$\mathrm{Noted}.\:\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 10/Mar/25

$${i}\:{found}\:{it}\:{in}\:{internet}.\:{i}\:{have}\:{only} \\ $$$${the}\:{same}\:{internet}\:{which}\:{you}\:{also}\: \\ $$$${have}. \\ $$
Answered by mathmax last updated on 11/Mar/25

$$\Psi^{'} \left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({n}+{x}\right)^{\mathrm{2}} }\:{and}\: \\ $$$$\Psi^{\left(\mathrm{2}\right)} \left({x}\right)=−\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({n}+{x}\right)^{\mathrm{3}} }\:\Rightarrow \\ $$$$\Psi^{\left(\mathrm{2}\right)} \left(\mathrm{1}\right)=−\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }=−\mathrm{2}\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}^{\mathrm{3}} } \\ $$$$=−\mathrm{2}\xi\left(\mathrm{3}\right) \\ $$$$\Psi^{\left(\mathrm{2}\right)} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} }=−\mathrm{16}\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\xi\left(\mathrm{3}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{8}}\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{n}^{\mathrm{3}} }+\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\Rightarrow\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{8}}\right)\xi\left(\mathrm{3}\right)=\frac{\mathrm{7}}{\mathrm{8}}\xi\left(\mathrm{3}\right) \\ $$$$\:\Rightarrow\Psi^{\left(\mathrm{2}\right)} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\mathrm{16}.\frac{\mathrm{7}}{\mathrm{8}}\:\xi\left(\mathrm{3}\right)=−\mathrm{14}\:×\xi\left(\mathrm{3}\right) \\ $$
Commented by Tawa11 last updated on 11/Mar/25

$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$