Menu Close

Find-three-consecutive-integers-such-that-the-sum-of-their-squares-is-50-




Question Number 217326 by Rasheed.Sindhi last updated on 10/Mar/25
Find three consecutive integers   such that the sum of their squares   is 50.
$${Find}\:{three}\:{consecutive}\:{integers}\: \\ $$$${such}\:{that}\:{the}\:{sum}\:{of}\:{their}\:{squares} \\ $$$$\:{is}\:\mathrm{50}. \\ $$
Answered by Hanuda354 last updated on 10/Mar/25
Let n, n+1  and  n+2  are  required  numbers.    n^2  + (n+1)^2  + (n+2)^2  = 50                        3n^2  + 6n + 5 = 50                   3n^2  + 6n − 45  = 0               3(n^2  + 2n − 15)  = 0                   3(n+5)(n−3)  = 0           n = −5  ∨  n = 3    n = −5  ⇒ −5, −4, −3  n = 3       ⇒ 3, 4, 5
$$\mathrm{Let}\:{n},\:{n}+\mathrm{1}\:\:\mathrm{and}\:\:{n}+\mathrm{2}\:\:\mathrm{are}\:\:\mathrm{required}\:\:\mathrm{numbers}. \\ $$$$ \\ $$$${n}^{\mathrm{2}} \:+\:\left({n}+\mathrm{1}\right)^{\mathrm{2}} \:+\:\left({n}+\mathrm{2}\right)^{\mathrm{2}} \:=\:\mathrm{50} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}{n}^{\mathrm{2}} \:+\:\mathrm{6}{n}\:+\:\mathrm{5}\:=\:\mathrm{50} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}{n}^{\mathrm{2}} \:+\:\mathrm{6}{n}\:−\:\mathrm{45}\:\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\left({n}^{\mathrm{2}} \:+\:\mathrm{2}{n}\:−\:\mathrm{15}\right)\:\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\left({n}+\mathrm{5}\right)\left({n}−\mathrm{3}\right)\:\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:{n}\:=\:−\mathrm{5}\:\:\vee\:\:{n}\:=\:\mathrm{3} \\ $$$$ \\ $$$${n}\:=\:−\mathrm{5}\:\:\Rightarrow\:−\mathrm{5},\:−\mathrm{4},\:−\mathrm{3} \\ $$$${n}\:=\:\mathrm{3}\:\:\:\:\:\:\:\Rightarrow\:\mathrm{3},\:\mathrm{4},\:\mathrm{5} \\ $$
Commented by Rasheed.Sindhi last updated on 10/Mar/25
ThanX sir!
$$\mathcal{T}{han}\mathcal{X}\:{sir}! \\ $$
Answered by Rasheed.Sindhi last updated on 10/Mar/25
b−a=1⇒a^2 +b^2 −2ab=1  c−b=1⇒b^2 +c^2 −2bc=1  c−a=2⇒c^2 +a^2 −2ca=4  Adding:  2((a^2 +b^2 +c^2 )−(ab+bc+ca))=6     50−(ab+bc+ca)=3  ab+bc+ca=47  (a+b+c)^2 =a^2 +b^2 +c^2 +2(ab+bc+ca)    (3b)^2 =50+2(47)  9b^2 =50+94=144  b^2 =16  b=       4,−4  b−1=3,−5  b+1=5, −3
$${b}−{a}=\mathrm{1}\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}=\mathrm{1} \\ $$$${c}−{b}=\mathrm{1}\Rightarrow{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{bc}=\mathrm{1} \\ $$$${c}−{a}=\mathrm{2}\Rightarrow{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{ca}=\mathrm{4} \\ $$$$\mathrm{Adding}: \\ $$$$\mathrm{2}\left(\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−\left({ab}+{bc}+{ca}\right)\right)=\mathrm{6} \\ $$$$\:\:\:\mathrm{50}−\left({ab}+{bc}+{ca}\right)=\mathrm{3} \\ $$$${ab}+{bc}+{ca}=\mathrm{47} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}\left({ab}+{bc}+{ca}\right) \\ $$$$\:\:\left(\mathrm{3}{b}\right)^{\mathrm{2}} =\mathrm{50}+\mathrm{2}\left(\mathrm{47}\right) \\ $$$$\mathrm{9}{b}^{\mathrm{2}} =\mathrm{50}+\mathrm{94}=\mathrm{144} \\ $$$${b}^{\mathrm{2}} =\mathrm{16} \\ $$$${b}=\:\:\:\:\:\:\:\mathrm{4},−\mathrm{4} \\ $$$${b}−\mathrm{1}=\mathrm{3},−\mathrm{5} \\ $$$${b}+\mathrm{1}=\mathrm{5},\:−\mathrm{3} \\ $$
Answered by mr W last updated on 10/Mar/25
(n−1)^2 +n^2 +(n+1)^2 =50  n^2 =16  n=±4  ⇒(−5, −4, −3), (3, 4, 5)
$$\left({n}−\mathrm{1}\right)^{\mathrm{2}} +{n}^{\mathrm{2}} +\left({n}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{50} \\ $$$${n}^{\mathrm{2}} =\mathrm{16} \\ $$$${n}=\pm\mathrm{4} \\ $$$$\Rightarrow\left(−\mathrm{5},\:−\mathrm{4},\:−\mathrm{3}\right),\:\left(\mathrm{3},\:\mathrm{4},\:\mathrm{5}\right) \\ $$
Commented by Rasheed.Sindhi last updated on 10/Mar/25
Thanks sir!
$$\mathbb{T}\mathrm{han}\Bbbk\mathrm{s}\:\mathrm{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *