Menu Close

k-1-1-k-is-Divergence-p-P-1-p-P-is-set-of-prime-number-p-P-1-p-1-2-1-3-1-5-1-7-1-11-1-13-1-17-1-19-and-does-k-N-P-1-k-is-Divergenc




Question Number 217352 by issac last updated on 11/Mar/25
Σ_(k=1) ^∞  (1/k) is Divergence.  Σ_(p∈P)  (1/p)= ??   P is set of prime number  Σ_(p∈P)  (1/p)=(1/2)+(1/3)+(1/5)+(1/7)+(1/(11))+(1/(13))+(1/(17))+(1/(19))+.....  and  does Σ_(k∈N\{P}) (1/k) is Divergence..??  N\{P} is  Set of Natural number−Prime Number  {1,2,3,4,5,6,7......}−{2,3,5,7,11......}
$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{k}}\:\mathrm{is}\:\mathrm{Divergence}. \\ $$$$\underset{{p}\in\mathbb{P}} {\sum}\:\frac{\mathrm{1}}{{p}}=\:??\:\:\:\mathbb{P}\:\mathrm{is}\:\mathrm{set}\:\mathrm{of}\:\mathrm{prime}\:\mathrm{number} \\ $$$$\underset{{p}\in\mathbb{P}} {\sum}\:\frac{\mathrm{1}}{{p}}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{11}}+\frac{\mathrm{1}}{\mathrm{13}}+\frac{\mathrm{1}}{\mathrm{17}}+\frac{\mathrm{1}}{\mathrm{19}}+….. \\ $$$$\mathrm{and}\:\:\mathrm{does}\:\underset{{k}\in\mathbb{N}\backslash\left\{\mathbb{P}\right\}} {\sum}\frac{\mathrm{1}}{{k}}\:\mathrm{is}\:\mathrm{Divergence}..?? \\ $$$$\mathbb{N}\backslash\left\{\mathbb{P}\right\}\:\mathrm{is} \\ $$$$\mathrm{Set}\:\mathrm{of}\:\mathrm{Natural}\:\mathrm{number}−\mathrm{Prime}\:\mathrm{Number} \\ $$$$\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7}……\right\}−\left\{\mathrm{2},\mathrm{3},\mathrm{5},\mathrm{7},\mathrm{11}……\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *