Question Number 217358 by mnjuly1970 last updated on 11/Mar/25

Answered by mr W last updated on 12/Mar/25

$${let}\:\Delta={area}\:{of}\:{triangle}\:\Delta{ABC} \\ $$$${we}\:{have} \\ $$$$\Delta=\frac{\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)−\left({a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} \right)}}{\mathrm{4}} \\ $$$$\Delta=\frac{{ca}\:\mathrm{sin}\:{B}}{\mathrm{2}}=\frac{{ab}\:\mathrm{sin}\:{C}}{\mathrm{2}}=\frac{{bc}\:\mathrm{sin}\:{A}}{\mathrm{2}} \\ $$$$ \\ $$$$\frac{{xc}\:\mathrm{sin}\:\omega}{\mathrm{2}}+\frac{{ya}\:\mathrm{sin}\:\omega}{\mathrm{2}}+\frac{{zb}\:\mathrm{sin}\:\omega}{\mathrm{2}}=\Delta \\ $$$$\Rightarrow\left({xc}+{ya}+{zb}\right)\mathrm{sin}\:\omega=\mathrm{2}\Delta\:\:\:…\left({i}\right) \\ $$$$ \\ $$$${y}^{\mathrm{2}} ={x}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}{xc}\:\mathrm{cos}\:\omega \\ $$$${z}^{\mathrm{2}} ={y}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{ya}\:\mathrm{cos}\:\omega \\ $$$${x}^{\mathrm{2}} ={z}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{zb}\:\mathrm{cos}\:\omega \\ $$$$\Rightarrow\left({xc}+{ya}+{zb}\right)\mathrm{cos}\:\omega=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{\mathrm{2}}\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)/\left({ii}\right): \\ $$$$\Rightarrow\mathrm{tan}\:\omega=\frac{\mathrm{4}\Delta}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$$\mathrm{sin}\:\omega=\frac{\mathrm{4}\Delta}{\:\sqrt{\left(\mathrm{4}\Delta\right)^{\mathrm{2}} +\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:=\frac{\mathrm{4}\Delta}{\:\sqrt{\mathrm{2}\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)−\left({a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} \right)+{a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} +\mathrm{2}\left({a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} \right)}} \\ $$$$\:\:\:\:\:=\frac{\mathrm{2}\Delta}{\:\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} }} \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\omega}{\mathrm{2}\Delta}=\frac{\mathrm{1}}{\:\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} }} \\ $$$$ \\ $$$${in}\:\Delta{PAB}\:{we}\:{have} \\ $$$$\frac{{y}}{\mathrm{sin}\:\omega}=\frac{{c}}{\mathrm{sin}\:\left(\omega+{B}−\omega\right)}=\frac{{c}}{\mathrm{sin}\:{B}}=\frac{{c}^{\mathrm{2}} {a}}{{ca}\:\mathrm{sin}\:{B}}=\frac{{c}^{\mathrm{2}} {a}}{\mathrm{2}\Delta} \\ $$$$\Rightarrow{y}=\frac{{c}^{\mathrm{2}} {a}\:\mathrm{sin}\:\omega}{\mathrm{2}\Delta}=\frac{{c}^{\mathrm{2}} {a}}{\:\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} }} \\ $$$${similarly} \\ $$$${z}=\frac{{a}^{\mathrm{2}} {b}\:\mathrm{sin}\:\omega}{\mathrm{2}\Delta}=\frac{{a}^{\mathrm{2}} {b}}{\:\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} }} \\ $$$${x}=\frac{{b}^{\mathrm{2}} {c}\:\mathrm{sin}\:\omega}{\mathrm{2}\Delta}=\frac{{b}^{\mathrm{2}} {c}}{\:\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} }} \\ $$$$\Rightarrow{x}+{y}+{z}=\frac{{a}^{\mathrm{2}} {b}+{b}^{\mathrm{2}} {c}+{c}^{\mathrm{2}} {a}}{\:\sqrt{{a}^{\mathrm{2}} {b}^{\mathrm{2}} +{b}^{\mathrm{2}} {c}^{\mathrm{2}} +{c}^{\mathrm{2}} {a}^{\mathrm{2}} }}\:\checkmark \\ $$
Commented by mnjuly1970 last updated on 12/Mar/25

$$\:\: \\ $$