Question Number 218703 by Nicholas666 last updated on 14/Apr/25

$$ \\ $$$$\:\:\:\:{Prove};\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{x}\:−\:{sin}\:{x}}{{x}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{6}}\:\: \\ $$$$ \\ $$
Answered by SdC355 last updated on 14/Apr/25

$$ \\ $$$$\mathrm{sin}\left({x}\right)=\Sigma\:\frac{\left(−\right)^{{k}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)!}\left(\frac{{x}}{\mathrm{2}}\right)^{\mathrm{2}{k}+\mathrm{1}} ={x}−\frac{\mathrm{1}}{\mathrm{3}!}{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{5}!}{x}^{\mathrm{3}} …… \\ $$$${x}−\mathrm{sin}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{3}!}{x}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{5}!}{x}^{\mathrm{5}} +\frac{\mathrm{1}}{\mathrm{7}!}{x}^{\mathrm{7}} −……. \\ $$$$\frac{{x}−\mathrm{sin}\left({x}\right)}{{x}^{\mathrm{3}} }=\frac{\mathrm{1}}{\mathrm{3}!}−\frac{\mathrm{1}}{\mathrm{5}!}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{7}!}{x}^{\mathrm{4}} −……. \\ $$$$\mathrm{lim}\:''=\frac{\mathrm{1}}{\mathrm{6}} \\ $$
Commented by Nicholas666 last updated on 14/Apr/25

$${thanks} \\ $$
Answered by Nicholas666 last updated on 14/Apr/25

Answered by aleks041103 last updated on 14/Apr/25

$${Here}\:{is}\:{a}\:{proof}\:{that}\:{doesn}'{t}\:{use}\:{tailor} \\ $$$${series}. \\ $$$$ \\ $$$${sin}\left({x}\right)={sin}\left(\mathrm{3}\frac{{x}}{\mathrm{3}}\right)= \\ $$$$={sin}\left(\frac{{x}}{\mathrm{3}}\right){cos}\left(\frac{\mathrm{2}{x}}{\mathrm{3}}\right)+{sin}\left(\frac{\mathrm{2}{x}}{\mathrm{3}}\right){cos}\left(\frac{{x}}{\mathrm{3}}\right)= \\ $$$$={sin}\left(\frac{{x}}{\mathrm{3}}\right)\left(\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{3}}\right)\right)+\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{3}}\right){cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{3}}\right)= \\ $$$$={t}\left(\mathrm{1}−\mathrm{2}{t}^{\mathrm{2}} \right)+\mathrm{2}{t}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)= \\ $$$$={t}−\mathrm{2}{t}^{\mathrm{3}} +\mathrm{2}{t}−\mathrm{2}{t}^{\mathrm{3}} =\mathrm{3}{t}−\mathrm{4}{t}^{\mathrm{3}} \\ $$$${where}\:{t}={sin}\left({x}/\mathrm{3}\right). \\ $$$$ \\ $$$${Let} \\ $$$${a}=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{x}−{sin}\left({x}\right)}{{x}^{\mathrm{3}} }\:\left({if}\:{this}\:{limit}\:{exists}\right) \\ $$$${On}\:{the}\:{other}\:{hand}: \\ $$$$\frac{{x}−{sin}\left({x}\right)}{{x}^{\mathrm{3}} }=\frac{{x}−\mathrm{3}{sin}\left({x}/\mathrm{3}\right)+\mathrm{4}{sin}^{\mathrm{3}} \left({x}/\mathrm{3}\right)}{{x}^{\mathrm{3}} }= \\ $$$$=\frac{\mathrm{3}}{\mathrm{27}}\:\frac{\left({x}/\mathrm{3}\right)−{sin}\left({x}/\mathrm{3}\right)}{\left({x}/\mathrm{3}\right)^{\mathrm{3}} }\:+\:\frac{\mathrm{4}}{\mathrm{27}}\:\left(\frac{{sin}\left({x}/\mathrm{3}\right)}{\left({x}/\mathrm{3}\right)}\right)^{\mathrm{3}} \\ $$$${We}\:{take}\:{the}\:{limit}\:{x}\rightarrow\mathrm{0},\:{which}\:{is}\:{the}\:{same} \\ $$$${as}\:\left({x}/\mathrm{3}\right)\rightarrow\mathrm{0}\:{and}\:{we}\:{get} \\ $$$${a}=\frac{{a}}{\mathrm{9}}+\frac{\mathrm{4}}{\mathrm{27}}\Rightarrow\mathrm{9}{a}={a}+\frac{\mathrm{4}}{\mathrm{3}}\Rightarrow{a}=\frac{\mathrm{4}}{\mathrm{3}.\mathrm{8}}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{{x}−{sin}\left({x}\right)}{{x}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}}{\mathrm{6}} \\ $$
Commented by Nicholas666 last updated on 16/Apr/25

$${thank}\:{you}\:{Sir} \\ $$