Question Number 218733 by Spillover last updated on 14/Apr/25

Commented by A5T last updated on 15/Apr/25

$$\mathrm{This}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{contradiction}\left(\mathrm{if}\:\mathrm{the}\:\mathrm{other}\:\mathrm{chord}\right. \\ $$$$\left.\mathrm{were}\:\mathrm{also}\:\mathrm{a}\:\mathrm{diameter}\right). \\ $$
Answered by mr W last updated on 15/Apr/25

Commented by mr W last updated on 15/Apr/25

$${R}=\sqrt{\mathrm{3}^{\mathrm{2}} +\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${a}={R}−\frac{\mathrm{3}}{\mathrm{2}}=\frac{\mathrm{3}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}{\mathrm{2}} \\ $$$${b}=\mathrm{2}{R}−\mathrm{3}{a}=\mathrm{2}×\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{2}}−\mathrm{3}×\frac{\mathrm{3}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}{\mathrm{2}}=\frac{\mathrm{3}\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)}{\mathrm{2}} \\ $$$${c}^{\mathrm{2}} =\mathrm{3}^{\mathrm{2}} +{b}^{\mathrm{2}} =\frac{\mathrm{27}\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)}{\mathrm{2}} \\ $$$${cd}=\mathrm{2}{a}\left({a}+{b}\right) \\ $$$$\frac{{h}}{\mathrm{3}}=\frac{{d}}{{c}}=\frac{\mathrm{2}{a}\left({a}+{b}\right)}{{c}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:=\frac{\mathrm{2}×\mathrm{2}}{\mathrm{27}\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)}×\frac{\mathrm{3}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}{\mathrm{2}}×\left(\frac{\mathrm{3}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}{\mathrm{2}}+\frac{\mathrm{3}\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:=\frac{\mathrm{2}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)}{\mathrm{3}\left(\mathrm{3}−\sqrt{\mathrm{5}}\right)}=\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{h}=\sqrt{\mathrm{5}}+\mathrm{1} \\ $$$${A}_{{pink}} =\frac{\mathrm{2}{ah}}{\mathrm{2}}={ah}=\frac{\mathrm{3}\left(\sqrt{\mathrm{5}}−\mathrm{1}\right)\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)}{\mathrm{2}}=\mathrm{6}\:\checkmark \\ $$
Commented by Spillover last updated on 15/Apr/25

$${very}\:{nice}.{thanks} \\ $$
Answered by Spillover last updated on 15/Apr/25

Answered by Spillover last updated on 15/Apr/25

Answered by Spillover last updated on 15/Apr/25
