Menu Close

Question-218735




Question Number 218735 by Spillover last updated on 14/Apr/25
Answered by som(math1967) last updated on 15/Apr/25
let rad of large circle =R  rad.of small circle=r  AD=2(√2)    (1/2)×R×(4+2(√2))=(1/2)×2×2   ⇒R=2−(√2)    again r(√2)=(2−(√2)−r)  ⇒r((√2)+1)=(2−(√2))   r=((2−(√2))/( (√2)+1))=(√2)((√2)−1)^2 =(√2)(3−2(√2))  Area of small circle  =π×2(3−2(√2))^2 cm^2
$${let}\:{rad}\:{of}\:{large}\:{circle}\:={R} \\ $$$${rad}.{of}\:{small}\:{circle}={r} \\ $$$${AD}=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\:\:\frac{\mathrm{1}}{\mathrm{2}}×{R}×\left(\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}×\mathrm{2} \\ $$$$\:\Rightarrow{R}=\mathrm{2}−\sqrt{\mathrm{2}} \\ $$$$\:\:{again}\:{r}\sqrt{\mathrm{2}}=\left(\mathrm{2}−\sqrt{\mathrm{2}}−{r}\right) \\ $$$$\Rightarrow{r}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)=\left(\mathrm{2}−\sqrt{\mathrm{2}}\right) \\ $$$$\:{r}=\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}=\sqrt{\mathrm{2}}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} =\sqrt{\mathrm{2}}\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$$${Area}\:{of}\:{small}\:{circle} \\ $$$$=\pi×\mathrm{2}\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} {cm}^{\mathrm{2}} \\ $$
Commented by Spillover last updated on 16/Apr/25
great work.thanks
$${great}\:{work}.{thanks}\: \\ $$
Answered by A5T last updated on 15/Apr/25
(√2)+R=2⇒R=2−(√2)  r(√2)=R−r⇒r=(R/(1+(√2)))=((2−(√2))/(1+(√2)))  ⇒r=3(√2)−4  ⇒Area of small circle =2π(17−12(√2))cm^2
$$\sqrt{\mathrm{2}}+\mathrm{R}=\mathrm{2}\Rightarrow\mathrm{R}=\mathrm{2}−\sqrt{\mathrm{2}} \\ $$$$\mathrm{r}\sqrt{\mathrm{2}}=\mathrm{R}−\mathrm{r}\Rightarrow\mathrm{r}=\frac{\mathrm{R}}{\mathrm{1}+\sqrt{\mathrm{2}}}=\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{1}+\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\mathrm{r}=\mathrm{3}\sqrt{\mathrm{2}}−\mathrm{4} \\ $$$$\Rightarrow\mathrm{Area}\:\mathrm{of}\:\mathrm{small}\:\mathrm{circle}\:=\mathrm{2}\pi\left(\mathrm{17}−\mathrm{12}\sqrt{\mathrm{2}}\right)\mathrm{cm}^{\mathrm{2}} \\ $$
Commented by Spillover last updated on 16/Apr/25
great work.thanks
$${great}\:{work}.{thanks}\: \\ $$
Answered by Spillover last updated on 16/Apr/25
Answered by Spillover last updated on 16/Apr/25
Answered by Spillover last updated on 16/Apr/25

Leave a Reply

Your email address will not be published. Required fields are marked *