Menu Close

Question-218739




Question Number 218739 by Spillover last updated on 14/Apr/25
Answered by A5T last updated on 15/Apr/25
AB=c ; BC=a ; CA =b ; AF=h_a   AF⊥BC ; BG⊥DC ; DH⊥BC   S_(△ABC) =((ah_a )/2)⇒h_a =((2S_(△ABC) )/a)  Then DH=(h_a /2)=(S_(△ABC) /a)  (c^2 /4)+CD^2 =a^2 ×(1/2)+(1/2)×b^2 ⇒CD^2 =((2a^2 +2b^2 −c^2 )/4)  [BCD]=((BC×DH)/2)=((CD×BG)/2)=(((√(2a^2 +2b^2 −c^2 ))×BG)/4)  ⇒BG=((2S_(ABC) )/( (√(2a^2 +2b^2 −c^2 ))))⇒BG^2 =((4[S_(△ABC) ]^2 )/(2a^2 +2b^2 −c^2 ))    CG=(√(BC^2 −BG^2 ))  ⇒tan(180−θ)=((BG)/(CG−((2CD)/3)))  tan(180−θ)=(((2S_(ABC) )/( (√(2a^2 +2b^2 −c^2 ))))/( (√(a^2 −((4[S_(△ABC) ]^2 )/(2a^2 +2b^2 −c^2 ))))−((√(2a^2 +2b^2 −c^2 ))/3)))  =(((2S_(△aABC) )/( (√(2a^2 +2b^2 −c^2 ))))/((3(√(2a^4 +2a^2 b^2 −a^2 c^2 −4[S_(△ABC) ]^2 ))−(2a^2 +2b^2 −c^2 ))/(3(√(2a^2 +2b^2 −c^2 )))))  S_(△ABC) =((√((2ab)^2 −(c^2 −a^2 −b^2 )^2 ))/4)  ⇒tan(180−θ)=((12S_(△ABC) )/(3(√(8a^4 +8a^2 b^2 −4a^2 c^2 −(2ab)^2 +(c^2 −a^2 −b^2 )^2 ))−(4a^2 +4b^2 −2c^2 )))  =((12S_(△ABC) )/(3(√(8a^4 +4a^2 b^2 −4a^2 c^2 +c^4 +a^4 +b^4 −2a^2 c^2 −2b^2 c^2 +2a^2 b^2 ))−(4a^2 +4b^2 −2c^2 )))  =((12S_(△ABC) )/( 3(√(9a^4 +b^4 +c^4 +6a^2 b^2 −6a^2 c^2 −2b^2 c^2 ))−(4a^2 +4b^2 −2c^2 )))  =((12S_(△ABC) )/(3(√((3a^2 +b^2 −c^2 )^2 ))−(4a^2 +4b^2 −2c^2 )))  =((12S_(△ABC) )/(3(3a^2 +b^2 −c^2 )−4a^2 −4b^2 +2c^2 ))=((12S_(△ABC) )/(5a^2 −b^2 −c^2 ))  But tan(180−θ)=−tanθ  ⇒tanθ=−tan(180−θ)=((12S_(ABC) )/(b^2 +c^2 −5a^2 ))
$$\mathrm{AB}=\mathrm{c}\:;\:\mathrm{BC}=\mathrm{a}\:;\:\mathrm{CA}\:=\mathrm{b}\:;\:\mathrm{AF}=\mathrm{h}_{\mathrm{a}} \\ $$$$\mathrm{AF}\bot\mathrm{BC}\:;\:\mathrm{BG}\bot\mathrm{DC}\:;\:\mathrm{DH}\bot\mathrm{BC}\: \\ $$$$\mathrm{S}_{\bigtriangleup\mathrm{ABC}} =\frac{\mathrm{ah}_{\mathrm{a}} }{\mathrm{2}}\Rightarrow\mathrm{h}_{\mathrm{a}} =\frac{\mathrm{2S}_{\bigtriangleup\mathrm{ABC}} }{\mathrm{a}} \\ $$$$\mathrm{Then}\:\mathrm{DH}=\frac{\mathrm{h}_{\mathrm{a}} }{\mathrm{2}}=\frac{\mathrm{S}_{\bigtriangleup\mathrm{ABC}} }{\mathrm{a}} \\ $$$$\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{CD}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} ×\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{b}^{\mathrm{2}} \Rightarrow\mathrm{CD}^{\mathrm{2}} =\frac{\mathrm{2a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\left[\mathrm{BCD}\right]=\frac{\mathrm{BC}×\mathrm{DH}}{\mathrm{2}}=\frac{\mathrm{CD}×\mathrm{BG}}{\mathrm{2}}=\frac{\sqrt{\mathrm{2a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} }×\mathrm{BG}}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{BG}=\frac{\mathrm{2S}_{\mathrm{ABC}} }{\:\sqrt{\mathrm{2a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} }}\Rightarrow\mathrm{BG}^{\mathrm{2}} =\frac{\mathrm{4}\left[\mathrm{S}_{\bigtriangleup\mathrm{ABC}} \right]^{\mathrm{2}} }{\mathrm{2a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} } \\ $$$$ \\ $$$$\mathrm{CG}=\sqrt{\mathrm{BC}^{\mathrm{2}} −\mathrm{BG}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{tan}\left(\mathrm{180}−\theta\right)=\frac{\mathrm{BG}}{\mathrm{CG}−\frac{\mathrm{2CD}}{\mathrm{3}}} \\ $$$$\mathrm{tan}\left(\mathrm{180}−\theta\right)=\frac{\frac{\mathrm{2S}_{\mathrm{ABC}} }{\:\sqrt{\mathrm{2a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} }}}{\:\sqrt{\mathrm{a}^{\mathrm{2}} −\frac{\mathrm{4}\left[\mathrm{S}_{\bigtriangleup\mathrm{ABC}} \right]^{\mathrm{2}} }{\mathrm{2a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} }}−\frac{\sqrt{\mathrm{2a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} }}{\mathrm{3}}} \\ $$$$=\frac{\frac{\mathrm{2S}_{\bigtriangleup\mathrm{aABC}} }{\:\sqrt{\mathrm{2a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} }}}{\frac{\mathrm{3}\sqrt{\mathrm{2a}^{\mathrm{4}} +\mathrm{2a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{4}\left[\mathrm{S}_{\bigtriangleup\mathrm{ABC}} \right]^{\mathrm{2}} }−\left(\mathrm{2a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} \right)}{\mathrm{3}\sqrt{\mathrm{2a}^{\mathrm{2}} +\mathrm{2b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} }}} \\ $$$$\mathrm{S}_{\bigtriangleup\mathrm{ABC}} =\frac{\sqrt{\left(\mathrm{2ab}\right)^{\mathrm{2}} −\left(\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)^{\mathrm{2}} }}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{tan}\left(\mathrm{180}−\theta\right)=\frac{\mathrm{12S}_{\bigtriangleup\mathrm{ABC}} }{\mathrm{3}\sqrt{\mathrm{8a}^{\mathrm{4}} +\mathrm{8a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} −\mathrm{4a}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\left(\mathrm{2ab}\right)^{\mathrm{2}} +\left(\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)^{\mathrm{2}} }−\left(\mathrm{4a}^{\mathrm{2}} +\mathrm{4b}^{\mathrm{2}} −\mathrm{2c}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{12S}_{\bigtriangleup\mathrm{ABC}} }{\mathrm{3}\sqrt{\mathrm{8a}^{\mathrm{4}} +\mathrm{4a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} −\mathrm{4a}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} +\mathrm{c}^{\mathrm{4}} +\mathrm{a}^{\mathrm{4}} +\mathrm{b}^{\mathrm{4}} −\mathrm{2a}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{2b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} +\mathrm{2a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} }−\left(\mathrm{4a}^{\mathrm{2}} +\mathrm{4b}^{\mathrm{2}} −\mathrm{2c}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{12S}_{\bigtriangleup\mathrm{ABC}} }{\:\mathrm{3}\sqrt{\mathrm{9a}^{\mathrm{4}} +\mathrm{b}^{\mathrm{4}} +\mathrm{c}^{\mathrm{4}} +\mathrm{6a}^{\mathrm{2}} \mathrm{b}^{\mathrm{2}} −\mathrm{6a}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{2b}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} }−\left(\mathrm{4a}^{\mathrm{2}} +\mathrm{4b}^{\mathrm{2}} −\mathrm{2c}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{12S}_{\bigtriangleup\mathrm{ABC}} }{\mathrm{3}\sqrt{\left(\mathrm{3a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} \right)^{\mathrm{2}} }−\left(\mathrm{4a}^{\mathrm{2}} +\mathrm{4b}^{\mathrm{2}} −\mathrm{2c}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{12S}_{\bigtriangleup\mathrm{ABC}} }{\mathrm{3}\left(\mathrm{3a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} \right)−\mathrm{4a}^{\mathrm{2}} −\mathrm{4b}^{\mathrm{2}} +\mathrm{2c}^{\mathrm{2}} }=\frac{\mathrm{12S}_{\bigtriangleup\mathrm{ABC}} }{\mathrm{5a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} } \\ $$$$\mathrm{But}\:\mathrm{tan}\left(\mathrm{180}−\theta\right)=−\mathrm{tan}\theta \\ $$$$\Rightarrow\mathrm{tan}\theta=−\mathrm{tan}\left(\mathrm{180}−\theta\right)=\frac{\mathrm{12S}_{\mathrm{ABC}} }{\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{5a}^{\mathrm{2}} } \\ $$
Commented by A5T last updated on 15/Apr/25
Commented by Spillover last updated on 16/Apr/25
great work.thanks
$${great}\:{work}.{thanks}\: \\ $$
Answered by Spillover last updated on 15/Apr/25

Leave a Reply

Your email address will not be published. Required fields are marked *