Question Number 74615 by chess1 last updated on 27/Nov/19 Answered by mind is power last updated on 27/Nov/19 $$\mathrm{a}=\mathrm{8}−\mathrm{b} \\ $$$$\left(\mathrm{2}\right)\Leftrightarrow\left(\mathrm{8}−\mathrm{b}\right)^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} =\mathrm{32} \\…
Question Number 74609 by TawaTawa last updated on 27/Nov/19 $$. \\ $$ Commented by TawaTawa last updated on 27/Nov/19 The force F acting along an inclined plane is just sufficient to maintain a body on the plane, the angle of friction M being less than Y, the angle of plane. prove that the least force acting along the plane, sufficient to drag the body up the plane is : F sin( M + Y )/sin( M - Y) Terms of Service Privacy Policy…
Question Number 74611 by chess1 last updated on 27/Nov/19 Answered by mind is power last updated on 27/Nov/19 $$\mathrm{et}\:\mathrm{x}=\mathrm{a}+\mathrm{1},\mathrm{y}=\mathrm{b}+\mathrm{1},\mathrm{z}=\mathrm{c}+\mathrm{1} \\ $$$$\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{11} \\ $$$$\frac{\mathrm{81}}{\mathrm{x}.\mathrm{y}.\mathrm{z}}\geqslant\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{\mathrm{27}}} \\ $$$$\Leftrightarrow\mathrm{xyz}\leqslant\mathrm{81}.\sqrt[{\mathrm{4}}]{\mathrm{27}}…
Question Number 74604 by TawaTawa last updated on 27/Nov/19 $$. \\ $$ Commented by TawaTawa last updated on 27/Nov/19 Six balls are identical in size; 2 are red,2 white and 2 green. In how many different ways can they be arranged in a circle touching each other? Commented by mr W last…
Question Number 140139 by mathsuji last updated on 04/May/21 Answered by mr W last updated on 04/May/21 $${say}\:{radius}\:{of}\:{curcumcircle}\:{is}\:{r} \\ $$$$\Sigma\mathrm{sin}^{−\mathrm{1}} \frac{{a}}{\mathrm{2}{r}}=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{6}}{\mathrm{2}{r}}+\mathrm{sin}\:\frac{\mathrm{3}}{\mathrm{2}{r}}+\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{11}}}{\mathrm{2}{r}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{6}}{\mathrm{2}{r}}+\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{2}}}{\mathrm{2}{r}}=\pi…
Question Number 74599 by mind is power last updated on 27/Nov/19 $$\mathrm{Hello},\mathrm{verry}\:\mathrm{Nice}\:\mathrm{day}\: \\ $$$$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\mathrm{E}\left(\left(\frac{\mathrm{3}+\sqrt{\mathrm{17}}}{\mathrm{2}}\right)^{\mathrm{n}} \right),\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{U}_{\mathrm{n}} \equiv\mathrm{n}\left(\mathrm{2}\right) \\ $$ Terms of Service Privacy…
Question Number 9061 by tawakalitu last updated on 16/Nov/16 Commented by tawakalitu last updated on 16/Nov/16 $$\mathrm{please}\:\mathrm{help}. \\ $$ Answered by mrW last updated on…
Question Number 140129 by mathdanisur last updated on 04/May/21 $${x};{y}\in\mathbb{R}^{+} \:;\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2} \\ $$$${proof}:\:\mathrm{3}−{xy}\geqslant\left({x}+{y}\right)\sqrt{{xy}}+\left({x}−{y}\right)^{\mathrm{2}} \geqslant\mathrm{2}{xy} \\ $$ Answered by mr W last updated on…
Question Number 74587 by lalitchand last updated on 27/Nov/19 $$\mathrm{If}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{n}\:\mathrm{arithmetic}\:\mathrm{means}\:\mathrm{between}\: \\ $$$$\mathrm{two}\:\mathrm{number}\:\mathrm{is}\:\mathrm{20}.\mathrm{if}\:\mathrm{last}\:\mathrm{mean}\:\mathrm{is}\:\mathrm{double} \\ $$$$\mathrm{of}\:\mathrm{1st}\:\mathrm{mean}\:\mathrm{and}\:\mathrm{one}\:\mathrm{is}\:\mathrm{three}\:\mathrm{times}\:\mathrm{of} \\ $$$$\mathrm{another}\:\mathrm{number}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{numbers}. \\ $$$$ \\ $$ Terms of Service Privacy Policy…
Question Number 140113 by EnterUsername last updated on 04/May/21 $$\mathrm{Let}\:{z}_{\mathrm{1}} =\mathrm{1}+{i},\:{z}_{\mathrm{2}} =−\mathrm{1}−{i}\:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{be}\:\mathrm{complex}\:\mathrm{numbers} \\ $$$$\mathrm{such}\:\mathrm{that}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\mathrm{and}\:{z}_{\mathrm{3}} \:\mathrm{form}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}. \\ $$$$\mathrm{Then}\:{z}_{\mathrm{3}} \:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left(\mathrm{A}\right)\:\sqrt{\mathrm{3}}\left(\mathrm{1}+{i}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\sqrt{\mathrm{3}}\left(\mathrm{1}−{i}\right) \\ $$$$\left(\mathrm{C}\right)\:\sqrt{\mathrm{3}}\left({i}−\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\sqrt{\mathrm{3}}\left(−\mathrm{1}−{i}\right)…