Menu Close

Category: Mensuration

An-oil-can-is-to-be-made-in-form-of-a-right-circular-cylinder-that-be-inscribed-in-a-sphere-of-radius-R-obtain-the-maximum-volume-of-the-can-

Question Number 6430 by sanusihammed last updated on 27/Jun/16 $${An}\:{oil}\:{can}\:{is}\:{to}\:{be}\:{made}\:{in}\:{form}\:{of}\:{a}\:{right}\:{circular}\:{cylinder}\:{that}\:{be} \\ $$$${inscribed}\:{in}\:{a}\:{sphere}\:{of}\:{radius}\:{R}.\:{obtain}\:{the}\:{maximum}\: \\ $$$${volume}\:{of}\:{the}\:{can}. \\ $$ Commented by sanusihammed last updated on 27/Jun/16 $${Thanks}\:{so}\:{much}\:{sir}.\: \\…

Question-6334

Question Number 6334 by sanusihammed last updated on 24/Jun/16 Commented by nburiburu last updated on 24/Jun/16 $${basically}\:{you}\:\:{need}\:{to}\:{find}\:{first}\:{the}\:{common}\:{area}. \\ $$$${To}\:{do}\:{it},\:{let}\:{be}\:{M}\:{and}\:{N}\:{the}\:{intersection}\:{of}\:{both}\:{circles}\:{and}\:{O}\:{and}\:{P}\:\:{the}\:{centres}\:{of}\:{circle}\:{with}\:{radius}\:{b}\:{and}\:{a}\:,\:{respectively}. \\ $$$${the}\:{area}\:{couldbefound}\:{doing} \\ $$$${Area}.{circ}.{sector}\:\left({NOM}\right)\:+\:{Area}.{circ}.{sector}\:\left({MPO}\right)+{Area}.{circ}.{sector}\left({OPN}\right)\:−\:{Area}\bigtriangleup{MPO}\:−\:{Area}\bigtriangleup{OPN} \\ $$$${and}\:{for}\:{this}\:{is}\:{necessary}\:{to}\:{know}\:{two}\:\:{central}\:{angles}…

Of-all-rectangular-boxes-without-a-lid-and-having-a-given-surface-area-Find-the-one-with-maximum-volume-

Question Number 6135 by sanusihammed last updated on 15/Jun/16 $${Of}\:{all}\:{rectangular}\:{boxes}\:{without}\:{a}\:{lid}\:{and}\:{having}\:{a}\:{given}\: \\ $$$${surface}\:{area}\:.\:{Find}\:{the}\:{one}\:{with}\:{maximum}\:{volume}. \\ $$ Commented by FilupSmith last updated on 15/Jun/16 $$\mathrm{Edge}\:\mathrm{lengths}\:{a},\:{b},\:{c} \\ $$$$\mathrm{Max}\:\mathrm{volume}\:\mathrm{when}\:{a}={b}={c} \\…

Show-that-of-all-rectangles-inscribed-in-a-given-circle-the-square-has-a-maximum-area-

Question Number 6136 by sanusihammed last updated on 15/Jun/16 $${Show}\:{that}\:{of}\:{all}\:{rectangles}\:{inscribed}\:{in}\:{a}\:{given}\:{circle}\: \\ $$$${the}\:{square}\:{has}\:{a}\:{maximum}\:{area}. \\ $$ Answered by Rasheed Soomro last updated on 15/Jun/16 $${All}\:{the}\:{rectangles}\:{inscribed}\:{in}\:{same}\:{circle} \\ $$$${have}\:{equal}\:{diagonals}\:{and}\:{vice}\:{versa}.…

Question-5940

Question Number 5940 by sanusihammed last updated on 05/Jun/16 Answered by FilupSmith last updated on 06/Jun/16 $${Are}\:{of}\:{non}\:{shaded}: \\ $$$${A}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}{r}\left(\theta−\mathrm{sin}\:\theta\right) \\ $$$$\therefore\mathrm{Total}\:\mathrm{A}{rea}: \\ $$$${A}=\pi{r}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{r}\left(\theta−\mathrm{sin}\:\theta\right)…

Soit-E-A-un-espace-mesure-On-suppose-qu-il-existe-un-X-A-tel-X-1-Montrer-que-si-est-semi-finie-alors-r-gt-0-il-existe-B-X-tel-que-r-lt-B-lt-

Question Number 70980 by ~ À ® @ 237 ~ last updated on 10/Oct/19 $$\:{Soit}\:\left({E},\mathcal{A},\mu\right)\:{un}\:\:{espace}\:{mesure}\:\:.\:{On}\:{suppose} \\ $$$${qu}'{il}\:{existe}\:{un}\:{X}\in\mathcal{A}\:\:{tel}\:\:\mu\left({X}\right)=+\infty \\ $$$$\left.\mathrm{1}\right){Montrer}\:{que}\:{si}\:\:\mu\:{est}\:{semi}-{finie}\:\:{alors} \\ $$$$\forall\:{r}>\mathrm{0}\:\:{il}\:{existe}\:\:{B}\subseteq{X}\:{tel}\:{que}\:\:{r}<\mu\left({B}\right)<\:+\infty \\ $$$$ \\ $$…