Question Number 72124 by aliesam last updated on 24/Oct/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6430 by sanusihammed last updated on 27/Jun/16 $${An}\:{oil}\:{can}\:{is}\:{to}\:{be}\:{made}\:{in}\:{form}\:{of}\:{a}\:{right}\:{circular}\:{cylinder}\:{that}\:{be} \\ $$$${inscribed}\:{in}\:{a}\:{sphere}\:{of}\:{radius}\:{R}.\:{obtain}\:{the}\:{maximum}\: \\ $$$${volume}\:{of}\:{the}\:{can}. \\ $$ Commented by sanusihammed last updated on 27/Jun/16 $${Thanks}\:{so}\:{much}\:{sir}.\: \\…
Question Number 6334 by sanusihammed last updated on 24/Jun/16 Commented by nburiburu last updated on 24/Jun/16 $${basically}\:{you}\:\:{need}\:{to}\:{find}\:{first}\:{the}\:{common}\:{area}. \\ $$$${To}\:{do}\:{it},\:{let}\:{be}\:{M}\:{and}\:{N}\:{the}\:{intersection}\:{of}\:{both}\:{circles}\:{and}\:{O}\:{and}\:{P}\:\:{the}\:{centres}\:{of}\:{circle}\:{with}\:{radius}\:{b}\:{and}\:{a}\:,\:{respectively}. \\ $$$${the}\:{area}\:{couldbefound}\:{doing} \\ $$$${Area}.{circ}.{sector}\:\left({NOM}\right)\:+\:{Area}.{circ}.{sector}\:\left({MPO}\right)+{Area}.{circ}.{sector}\left({OPN}\right)\:−\:{Area}\bigtriangleup{MPO}\:−\:{Area}\bigtriangleup{OPN} \\ $$$${and}\:{for}\:{this}\:{is}\:{necessary}\:{to}\:{know}\:{two}\:\:{central}\:{angles}…
Question Number 6234 by sanusihammed last updated on 19/Jun/16 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 6135 by sanusihammed last updated on 15/Jun/16 $${Of}\:{all}\:{rectangular}\:{boxes}\:{without}\:{a}\:{lid}\:{and}\:{having}\:{a}\:{given}\: \\ $$$${surface}\:{area}\:.\:{Find}\:{the}\:{one}\:{with}\:{maximum}\:{volume}. \\ $$ Commented by FilupSmith last updated on 15/Jun/16 $$\mathrm{Edge}\:\mathrm{lengths}\:{a},\:{b},\:{c} \\ $$$$\mathrm{Max}\:\mathrm{volume}\:\mathrm{when}\:{a}={b}={c} \\…
Question Number 6136 by sanusihammed last updated on 15/Jun/16 $${Show}\:{that}\:{of}\:{all}\:{rectangles}\:{inscribed}\:{in}\:{a}\:{given}\:{circle}\: \\ $$$${the}\:{square}\:{has}\:{a}\:{maximum}\:{area}. \\ $$ Answered by Rasheed Soomro last updated on 15/Jun/16 $${All}\:{the}\:{rectangles}\:{inscribed}\:{in}\:{same}\:{circle} \\ $$$${have}\:{equal}\:{diagonals}\:{and}\:{vice}\:{versa}.…
Question Number 5940 by sanusihammed last updated on 05/Jun/16 Answered by FilupSmith last updated on 06/Jun/16 $${Are}\:{of}\:{non}\:{shaded}: \\ $$$${A}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}{r}\left(\theta−\mathrm{sin}\:\theta\right) \\ $$$$\therefore\mathrm{Total}\:\mathrm{A}{rea}: \\ $$$${A}=\pi{r}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{r}\left(\theta−\mathrm{sin}\:\theta\right)…
Question Number 5909 by sanusihammed last updated on 04/Jun/16 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 71348 by ajfour last updated on 13/Oct/19 Commented by ajfour last updated on 13/Oct/19 $${If}\:{the}\:{circle}\:{has}\:{unit}\:{radius}\:{and} \\ $$$${each}\:{part}\:{have}\:{same}\:{area},\:{find} \\ $$$${radius}\:{of}\:{circular}\:{arc}. \\ $$ Commented by…
Question Number 70980 by ~ À ® @ 237 ~ last updated on 10/Oct/19 $$\:{Soit}\:\left({E},\mathcal{A},\mu\right)\:{un}\:\:{espace}\:{mesure}\:\:.\:{On}\:{suppose} \\ $$$${qu}'{il}\:{existe}\:{un}\:{X}\in\mathcal{A}\:\:{tel}\:\:\mu\left({X}\right)=+\infty \\ $$$$\left.\mathrm{1}\right){Montrer}\:{que}\:{si}\:\:\mu\:{est}\:{semi}-{finie}\:\:{alors} \\ $$$$\forall\:{r}>\mathrm{0}\:\:{il}\:{existe}\:\:{B}\subseteq{X}\:{tel}\:{que}\:\:{r}<\mu\left({B}\right)<\:+\infty \\ $$$$ \\ $$…