Below each type: brief definition, formula and a small plotted example (canvas).
3.1 Polynomial Function
Definition: $f(x)=a_nx^n+\dots+a_1x+a_0$, where $n$ is a non-negative integer.
Example: $f(x)=x^3-2x$
3.2 Algebraic Function
Definition: Built using algebraic operations (polynomials, roots). Example: $f(x)=\sqrt{x+1}$ (domain $x\ge-1$).
Example: $f(x)=\sqrt{x+1}$
3.3 Rational Function
Definition: Ratio of two polynomials $f(x)=\dfrac{p(x)}{q(x)}$, where $q(x)\neq0$.
Example: $f(x)=\dfrac{1}{x-1}$ (vertical asymptote at $x=1$).
3.4 Constant Function
Definition: $f(x)=c$ for all $x$ in domain.
Example: $f(x)=3$
3.5 Identity Function
Definition: $f(x)=x$.
Example: $f(x)=x$
3.6 Absolute Value Function
Definition: $f(x)=|x|$.
Example: $f(x)=|x|$
3.7 Signum Function
Definition: $\mathrm{sgn}\left({x}\right)=\begin{cases}{−\mathrm{1}}&{{x}<\mathrm{0}}\\{\mathrm{0}}&{{x}=\mathrm{0}}\\{\mathrm{1}}&{{x}>\mathrm{0}}\end{cases} $
Example: signum plot
3.8 Greatest Integer Function (GIF)
Definition: $\lfloor{x}\rfloor=\mathrm{greatest}\:\mathrm{integer}\:\leqslant\:{x}$. (Step function)
Example: $\lfloor{x}\rfloor$
3.9 Fractional Part Function
Definition: $\{x\}=x-\lfloor x\rfloor$, value in $[0,1)$.
Example: $\{x\}$