Menu Close

Matrices and Determinants

Definitions

Anm×nmatrixAisarectangular

arrayofelementswithmrowsandn

colums

A=[aij]=[a11a12a1na21azza2nam1am2amn]

Square Matrix

Squarematrixisofordern×n.

Asquarematrix[aij]issymmtrcifaij=aji.

Asquarematrix[aij]isskewsymmtrcifaij=aji.

Diagonal Matrix

Diagonalmatrixisasquarematrixwithall

elementszeroexceptthoseontheleading

diagonal.

Unit Matrix

Unitmatrixisadiagonalmatrixinwhich

allelementsontheleadingdiagonal

are1.UnitmatrixisdenotedbyI.

Null Matrix

Anullmatrixisonewhoseallelementsare0.

Operations with Matrics

Addition/Subtraction

TwomatricesAandBareequalifand

onlyiftheyareboththesameshapeand

correspondingelementsareequal.

Twomatricescanbeadded(orsubtracted)

ifandonlyiftheyhavethesameshapem×n.

A=[aij]=[a11a12a1na21a22a2nam1am2amn]

B=[bij]=[b11b12b1nb21b22b2nbm1bm2bmn]

A+B=[aij+bij]=[a11+b11a12+b12a1n+b1na21+b21a22+b22a2n+b2nam1+bm1am2+bm2amn+bmn]

Scaler Multiplication

Ifkisascaler,andAisamatrix,then

kA=[kaij]=[ka11ka12ka1nka21ka22ka2nkam1kam2kamn]

Multiplication

Twomatricescanbemultipliedtogether

onlywhennumberofcolumsinthefirst

isequaltonumberofrowsinthesecond.

If

A=[aij]=[a11a12a1na21a22a2nam1am2amn]

and

B=[bij]=[b11b12b1kb21b22b2kbn1bn2bnk]

C=AB=[cij]where

cij=nλ=1aiλbλj

Ifm×nmatrixismultipliedwithn×k

matrixthenresultisam×kmatrix.

Transpose of a Matrix

Iftherowsandcolumnsofamatrixare

interchangedthenthenewmatrixis

calledthetransposeoftheoriginalmatrix.

IfAistheoriginalmatrix,itstranspose

isdenotedAT.

IfAAT=IthenAisorthogonalmatrix.

IfABisdefined,then

(AB)T=BTAT

Positive Integral Powers

IfAisann×nmatrix,thenwedefine

A2=AA,A3=(AAA)andsoon.

Ingeneral,An=(AAntimes).

Also,A0=InwhereInisanidentity

matrixofordern.

Matrix Polynomial

Letf(x)=mi=0aixibeapolynomialof

degreem,IfAisasquarematrixof

ordern.Thenwedefine

f(A)=mi=0aiAi

Properties of Matrix Operations

1.Matrixadditioniscommutative.

A+B=B+A

2.Matrixadditionisassociative.

(A+B)+C=A+(B+C)

3.IfAisanm×nmatrixandOisam×nnull

matrix,then

A+O=O+A=A

4.NegativeofamatrixA=[aij]m×n

A=[aij]m×n

5.Subtrationoftwomatrices

AB=A+(B)

6.AA=A+(A)=(A)+A=O

7.k(A+B)=kA+kB,wherekscaler

8.(k1+k2)A=k1A+k2A,wherek1,k2scaler

9.k1(k2A)=(k1k2)A,wherek1,k2scaler

10.(AT)T=A

11.(A+B)T=AT+BT

12.(kA)T=kAT,kscaler

13.SymmetricmatrixAT=A

14.SkewsymmetricmatrixAT=A

15.Everydiagonalelementof

skewsymmetricmatrixis0.

16.Thesumoftwosymmetricmatrixissymmetric.

17.Thesumoftwoskewsymmetricmatrixisskewsymmetric.

18.Foranysquarematrix

(A+AT)issymmetric

(AAT)isskewsymmetric

19.Matrixmultiplicationisnot

commutativeisgeneral.

20.Matrixmultiplicationisassociative.

(AB)C=A(BC)

21.Multiplicationdistributesaddition.

A(B+C)=AB+AC

(A+B)C=AC+BC

22.IfAisanm×nmatrix

AIn=A

ImA=A

wherwInidentitymatrixofordern.

23.IfAisamatrixandOisnullmatrix,

Am×nOn×p=Om×p

Op×mAm×n=Op×n

24.IfAandBaretwomatricessuchthat

ABisdefinedthen

(AB)T=BTAT

25.IfAandBaretwomatricessuchthat

ABisdefinedthen

A(B)=(AB)

(A)(B)=(AB)

26.A(BC)=ABAC

Determinants

Correspondingtoeachsquarematrix

[a11a1nan1ann]

A=[aij]thereisassociatedanexpression

calledthedeterminantofAdenotedby

detAorA,writtenas

detA=∣A∣=|a11a1nan1ann|

Value of a Determinant

Valueofdeterminantoforder2

|a11a12a21a22|=(a11a22a12a21)

MinorofaijinA

TheminorofanelementaijinAisdefined

asthevalueofdeterminantobtainedby

deletingithrowandjthcolumnofA,

andisdenotedbyMij.

CofactorofaijinA

ThecofactorCijofanelementaijis

definedasCij=(1)i+jMij

Valueofadeterminant

Thevalueofadeterminantisthesumof

theproductsofelementofarow(orcolumn)

withtheircorrespondingcofactors.

Adeterminantmaybeexpandedby

arbitarilychosenroworcolumn.

Expansionofadeterminantorordern

Expansionbyithrow

detA=nj=1aijCij

Expansionbyjthcolumn

detA=ni=1aijCij

Properties of Determinants

1.Thevalueofadeterminantremains

unchangedifitsrowandcolumnsare

interchanged.

2.Iftworowsorcolumnsofadeterminantare

interchanged,thesignofdeterminant

ischangedbuttheabsolutevalue

remainssame.

3.Iftworows(ortwocolumns)are

identical,thevalueofthedeterminant

is0.

4.Iftheelementofanyroworcolumn

aremultipliedbyacommonfactor,

thedeterminantismultipliedby

thatfactor.

5.Iftheelementsofanyrow(orcolumn)

areincreased(ordecreased)byequal

multiplesorcorrespondingelementsof

anyotherrow(orcolumn),thevalue

ofthedeterminantisunchanged.

Adjoint of a Matrix

IfAisasquaren×nmatrix,itsadjoint,

denotedbyadjA,isthetransposeofthe

matrixofthematrixifcofactorsCijofA.

adjA=[Cij]T

Inverse of a Matrix

IfAisasquarematrixwithanonsingular

AthenitsinverseA1isgivenby:

A1=adjAdetA

IfmatrixproductABisdefinedthen

(AB)1=B1A1

Invertible Matrix

1.AA1=A1A=I

2.AB=ACB=C,ifA∣≠0

3.(AB)1=B1A1,ifA,B∣≠0

4.(AT)1=(A1)T,ifA∣≠0,ifA∣≠0

5.adj(AB)=(adjB)(adjA),ifA,B∣≠0

6.(adjA)T=adjAT,ifA∣≠0

7.adjA∣=∣An1,ifA∣≠0

8.adj(adjA)=∣An2A

Elementary Row and Column Transformation of a Matrix

The following are three elementary transformation of a matrix Rn indicates nth row.

  1. Interchange of any Two Rows or Two Columns (Rm=Rn,Rn=Rm or Cm=Cn,Cn=Cm)
  2. Multiplication of Row or Column by a Non-zero Number (Rn=kRn or Cn=kCn )
  3. Multiplication of Row or Column by a Non-zero Number and Add the Result to the Other Row or Column (Rn=Rn+kRm or Cn=Cn+kCm)

Linear Independence

Row R1,R2,,Rn with same number of columns are linearly independent if

a1R1+a2R2++anRn=R0, implies that ai=0 for i=1,2,n, R0 is row with all columns with values 0.

Columns C1,C2,,Cn with same number of rows are linearly independent if

a1C1+a2C2++anCn=C0, implies that ai=0 for i=1,2,n, C0 is column with all row with values 0.

Vectors v1,v2,,vn with same number of dimensions are linearly independent if

a1v1+a2v2++anvn=0, implies that ai=0 for i=1,2,n

Rank of a Matrix

The maximum number of linearly independent columns (or rows) of a matrix is called the rank of a matrix. The rank of a matrix cannot exceed the number of its rows or columns. 

Key Concepts:

  1. Linearly Independent Rows/Columns: A set of vectors (rows or columns) are linearly independent if no vector in the set can be written as a linear combination of the others. The rank indicates how many of the rows or columns are linearly independent.
  2. Row Rank and Column Rank: The row rank is the number of linearly independent rows, and the column rank is the number of linearly independent columns. Row rank is always equal to column rank for any matrix, which is why we just call it the rank of the matrix.

Methods to Find the Rank:

  1. Row Echelon Form (REF):
    • Transform the matrix into row echelon form (REF) using Gaussian elimination.
    • The rank is the number of non-zero rows in the REF.
  2. Reduced Row Echelon Form (RREF):
    • Transform the matrix into reduced row echelon form (RREF), which is a further simplified version of REF.
    • The rank is the number of non-zero rows in the RREF.
  3. Determinant Method (for square matrices):
    • For a square matrix, if the determinant is non-zero, the rank is equal to the number of rows (or columns). If the determinant is zero, the matrix has rank less than its size.
  4. Singular Value Decomposition (SVD):
    • For a matrix AAA, the rank can also be determined by the number of non-zero singular values in its Singular Value Decomposition (SVD).

Minor Method: If the rank of matrix A is r, then there exists at least one minor of order r which does not vanish.  Every minor of matrix A of order (r + 1) and higher-order (if any) vanishes.

Row Echelon Form

Specifically, a matrix is in row echelon form if

  • All rows consisting of only zeroes are at the bottom
  • The leading entry (that is the left-most nonzero entry) of every nonzero row is to the right of the leading entry of every row above
  • To convert a matrix to Row Echelon Form (REF), you perform a series of Gaussian elimination steps. The goal is to make the matrix satisfy the following conditions:
  • All nonzero rows are above any rows of all zeros.
  • The leading entry (also called the pivot) in each nonzero row is 1.
  • The pivot in any row appears to the right of the pivot in the row above it.
  • All entries below a pivot are zero.

Step-by-Step Process to Covert to Row Echelon From

  • Identify the first non-zero element in the first column. This element becomes your pivot.
  • Swap rows (if necessary) to make sure the pivot is at the top of the column (i.e., the pivot should be the first non-zero entry in the row).
  • Scale the row (if necessary) to make the pivot equal to 1. This can be done by dividing the entire row by the value of the pivot element.
  • Eliminate entries below the pivot: Use row operations to create zeros below the pivot. This is done by subtracting multiples of the pivot row from the rows below it.
  • Move to the next column: Once the pivot in the first column is dealt with, move to the next column and repeat the process for the remaining submatrix (i.e., ignore the row and column where the pivot was placed).
  • Continue until all pivots are in place: Repeat the process until you have processed all columns.

Reduced Row Echelon Form

To convert a matrix to Reduced Row Echelon Form (RREF), you need to apply Gaussian-Jordan elimination. The goal is to satisfy the following conditions:

  1. The first non-zero entry in each row (the pivot) is 1.
  2. The pivot is the only non-zero entry in its column (i.e., all entries above and below the pivot are zero).
  3. The pivots in each row move to the right as you move down the rows.
  4. All rows of zeros are at the bottom of the matrix.

Problems in Matrices and Determinants

https://www.tinkutara.com/category/maths/matricesanddeterminants/