Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86613 by Ar Brandon last updated on 29/Mar/20

∫_0 ^(1/2) ∫_0 ^(π/2) (1/(ycos(x)+1))dxdy

$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{{ycos}\left({x}\right)+\mathrm{1}}{dxdy} \\ $$ $$ \\ $$

Commented byabdomathmax last updated on 29/Mar/20

∫_0 ^(π/2)  (dx/(y cosx+1)) =_(tan((x/2))=t)    ∫_0 ^1   ((2dt)/((1+t^2 )(y((1−t^2 )/(1+t^2 ))+1)))  =2∫_0 ^1  (dt/(y−yt^2  +1+t^2 )) =2∫_0 ^1   (dy/((1−y)t^2 +1+y))  =(2/((1−y)))∫_0 ^1  (dy/(t^2  +((1+y)/(1−y))))  =_(t =(√((1+y)/(1−y)))u)     (2/((1−y)))×((1−y)/(1+y))  ∫_0 ^(√((1−y)/(1+y)))     (1/(1+u^2 ))×(√((1+y)/(1−y)))du  = (2/(√(1−y^2 ))) arctan((√((1−y)/(1+y)))) ⇒  ∫_0 ^(1/2)  ∫_0 ^(π/2)   ((dxdy)/(ycosx +1)) =2 ∫_0 ^(1/2) (1/(√(1−y^2 ))) arctan((√((1−y)/(1+y))))dy  ...be continued...

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{dx}}{{y}\:{cosx}+\mathrm{1}}\:=_{{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left({y}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{1}\right)} \\ $$ $$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dt}}{{y}−{yt}^{\mathrm{2}} \:+\mathrm{1}+{t}^{\mathrm{2}} }\:=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dy}}{\left(\mathrm{1}−{y}\right){t}^{\mathrm{2}} +\mathrm{1}+{y}} \\ $$ $$=\frac{\mathrm{2}}{\left(\mathrm{1}−{y}\right)}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dy}}{{t}^{\mathrm{2}} \:+\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}} \\ $$ $$=_{{t}\:=\sqrt{\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}}{u}} \:\:\:\:\frac{\mathrm{2}}{\left(\mathrm{1}−{y}\right)}×\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}\:\:\int_{\mathrm{0}} ^{\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}} \:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }×\sqrt{\frac{\mathrm{1}+{y}}{\mathrm{1}−{y}}}{du} \\ $$ $$=\:\frac{\mathrm{2}}{\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}\:{arctan}\left(\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}\right)\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dxdy}}{{ycosx}\:+\mathrm{1}}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \frac{\mathrm{1}}{\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}\:{arctan}\left(\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}\right){dy} \\ $$ $$...{be}\:{continued}... \\ $$

Commented bymind is power last updated on 30/Mar/20

y=cos(2θ)  aarctan((√((1−y)/(1+y))))=arctan(tan(θ))=θ

$${y}={cos}\left(\mathrm{2}\theta\right) \\ $$ $${aarctan}\left(\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}\right)={arctan}\left({tan}\left(\theta\right)\right)=\theta \\ $$

Commented bymathmax by abdo last updated on 30/Mar/20

changement y=cosθ give   ∫_0 ^(1/2)   (1/(√(1−y^2 )))arctan((√((1−y)/(1+y))))dy =∫_(π/2) ^(π/3)  (1/(sinθ)) arctan((√((2sin^2 ((θ/2)))/(2cos^2 ((θ/2))))))(−sinθ)dθ  = ∫_(π/3) ^(π/2)  arctan(tan((θ/2))) dθ =(1/2) ∫_(π/3) ^(π/2) θ dθ =(1/2)[(θ^2 /2)]_(π/3) ^(π/2)   =(1/4)( (π^2 /4)−(π^2 /9)) =(1/4)(((9π^2 −4π^2 )/(36))) =((5π^2 )/(144))

$${changement}\:{y}={cos}\theta\:{give}\: \\ $$ $$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }}{arctan}\left(\sqrt{\frac{\mathrm{1}−{y}}{\mathrm{1}+{y}}}\right){dy}\:=\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{3}}} \:\frac{\mathrm{1}}{{sin}\theta}\:{arctan}\left(\sqrt{\frac{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}{\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)}}\right)\left(−{sin}\theta\right){d}\theta \\ $$ $$=\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:{arctan}\left({tan}\left(\frac{\theta}{\mathrm{2}}\right)\right)\:{d}\theta\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \theta\:{d}\theta\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\theta^{\mathrm{2}} }{\mathrm{2}}\right]_{\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{4}}\left(\:\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−\frac{\pi^{\mathrm{2}} }{\mathrm{9}}\right)\:=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{9}\pi^{\mathrm{2}} −\mathrm{4}\pi^{\mathrm{2}} }{\mathrm{36}}\right)\:=\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{144}} \\ $$

Commented bymathmax by abdo last updated on 30/Mar/20

thank you sir mind..

$${thank}\:{you}\:{sir}\:{mind}.. \\ $$

Commented byAr Brandon last updated on 30/Mar/20

great  job

$${great}\:\:{job} \\ $$

Commented byabdomathmax last updated on 30/Mar/20

you are welcome sir.

$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com