Question Number 147195 by mnjuly1970 last updated on 18/Jul/21 | ||
![]() | ||
$$ \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{Li}_{\:\mathrm{2}} \left(\:\sqrt{{x}}\:\right){dx}\:=\:? \\ $$ $$ \\ $$ | ||
Answered by Olaf_Thorendsen last updated on 18/Jul/21 | ||
![]() | ||
$$ \\ $$ $$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{Li}_{\mathrm{2}} \left(\sqrt{{x}}\right)\:{dx} \\ $$ $$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\sqrt{{x}}\right)^{{k}} }{{k}^{\mathrm{2}} }\:{dx} \\ $$ $$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{\frac{{k}}{\mathrm{2}}} }{{k}^{\mathrm{2}} }\:{dx} \\ $$ $$\Omega\:=\:\left[\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{\frac{{k}}{\mathrm{2}}+\mathrm{1}} }{{k}^{\mathrm{2}} \left(\frac{{k}}{\mathrm{2}}+\mathrm{1}\right)}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$ $$\Omega\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} \left(\frac{{k}}{\mathrm{2}}+\mathrm{1}\right)} \\ $$ $$\Omega\:=\:\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} \left({k}+\mathrm{2}\right)} \\ $$ $$\Omega\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{{k}}+\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{{k}+\mathrm{2}}\right) \\ $$ $$\Omega\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}+\mathrm{2}}\right) \\ $$ $$\Omega\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$ $$\Omega\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{3}}{\mathrm{4}} \\ $$ | ||
Commented bymnjuly1970 last updated on 19/Jul/21 | ||
![]() | ||
$$\:\:\:\:\:{mercey}\:−{thanks}\:{alot}\:{master} \\ $$ $$\:\:\:{olaf}\:.... \\ $$ | ||
Answered by Kamel last updated on 18/Jul/21 | ||
![]() | ||
$$\overset{{t}=\sqrt{{x}}} {=}\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {tLi}_{\mathrm{2}} \left({t}\right){dt}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\int_{\mathrm{0}} ^{\mathrm{1}} {tLn}\left(\mathrm{1}−{t}\right){dt} \\ $$ $$\:\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{t}\right){dt}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$ $$\therefore\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {Li}_{\mathrm{2}} \left(\sqrt{{x}}\right){dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{3}}{\mathrm{4}} \\ $$ | ||
Commented bymnjuly1970 last updated on 19/Jul/21 | ||
![]() | ||
$${thank}\:{you}\:{so}\:{much}\:{mr}\:{kamel}.. \\ $$ | ||