Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 92344 by 675480065 last updated on 06/May/20

∫_0 ^1 (dx/((√(1+3x))−(√(1−3x))))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\sqrt{\mathrm{1}+\mathrm{3x}}−\sqrt{\mathrm{1}−\mathrm{3x}}} \\ $$

Commented byjohn santu last updated on 06/May/20

∫_0 ^1  (((√(1+3x)) + (√(1−3x)))/(6x))  dx   I_1  = ∫_0 ^1  ((√(1+3x))/(6x)) dx  I_2  = ∫_0 ^1  ((√(1−3x))/(6x)) dx

$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\sqrt{\mathrm{1}+\mathrm{3}{x}}\:+\:\sqrt{\mathrm{1}−\mathrm{3}{x}}}{\mathrm{6}{x}}\:\:{dx}\: \\ $$ $${I}_{\mathrm{1}} \:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\sqrt{\mathrm{1}+\mathrm{3}{x}}}{\mathrm{6}{x}}\:{dx} \\ $$ $${I}_{\mathrm{2}} \:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{\sqrt{\mathrm{1}−\mathrm{3}{x}}}{\mathrm{6}{x}}\:{dx}\: \\ $$

Commented by675480065 last updated on 06/May/20

thnks sir   i cant continue

$$\mathrm{thnks}\:\mathrm{sir}\: \\ $$ $$\mathrm{i}\:\mathrm{cant}\:\mathrm{continue} \\ $$

Commented bymathmax by abdo last updated on 06/May/20

this integral is divergent   (√(1+3x))∼1+((3x)/2)  and (√(1−3x))∼1−((3x)/2)  ⇒(√(1+3x))−(√(1−3x))∼3x ⇒(1/((√(1+3x))−(√(1−3x)))) ∼(1/(3x)) but  ∫_0 ^1  (dx/(3x))   is divergent...!

$${this}\:{integral}\:{is}\:{divergent}\:\:\:\sqrt{\mathrm{1}+\mathrm{3}{x}}\sim\mathrm{1}+\frac{\mathrm{3}{x}}{\mathrm{2}}\:\:{and}\:\sqrt{\mathrm{1}−\mathrm{3}{x}}\sim\mathrm{1}−\frac{\mathrm{3}{x}}{\mathrm{2}} \\ $$ $$\Rightarrow\sqrt{\mathrm{1}+\mathrm{3}{x}}−\sqrt{\mathrm{1}−\mathrm{3}{x}}\sim\mathrm{3}{x}\:\Rightarrow\frac{\mathrm{1}}{\sqrt{\mathrm{1}+\mathrm{3}{x}}−\sqrt{\mathrm{1}−\mathrm{3}{x}}}\:\sim\frac{\mathrm{1}}{\mathrm{3}{x}}\:{but} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\mathrm{3}{x}}\:\:\:{is}\:{divergent}...! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com