Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 53386 by gunawan last updated on 21/Jan/19

∫_( 0) ^1    (dx/(e^x + e^(−x) )) = tan^(−1) e− (π/4)

$$\underset{\:\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\:\frac{{dx}}{{e}^{{x}} +\:{e}^{−{x}} }\:=\:\mathrm{tan}^{−\mathrm{1}} {e}−\:\frac{\pi}{\mathrm{4}} \\ $$

Commented byTinkutara last updated on 21/Jan/19

=∫((e^x dx)/(e^(2x) +1))  Put e^x =t and integrate

$$=\int\frac{{e}^{{x}} {dx}}{{e}^{\mathrm{2}{x}} +\mathrm{1}} \\ $$ $${Put}\:{e}^{{x}} ={t}\:{and}\:{integrate} \\ $$

Commented byajfour last updated on 21/Jan/19

how was your Mains exam ?

$${how}\:{was}\:{your}\:{Mains}\:{exam}\:? \\ $$

Commented bygunawan last updated on 21/Jan/19

Nice and clearly Sir

$$\mathrm{Nice}\:\mathrm{and}\:\mathrm{clearly}\:\mathrm{Sir} \\ $$

Commented bymaxmathsup by imad last updated on 21/Jan/19

let I =∫_0 ^1  (dx/(e^x +e^(−x) )) ⇒I=_(e^x =t)      ∫_1 ^e    (1/(t +t^(−1) )) (dt/t) =∫_1 ^e   (dt/(t^2  +1))  =[arctan(t)]_1 ^e =arctan(e)−arctan(1)=arctan(e)−(π/4) .

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{{e}^{{x}} +{e}^{−{x}} }\:\Rightarrow{I}=_{{e}^{{x}} ={t}} \:\:\:\:\:\int_{\mathrm{1}} ^{{e}} \:\:\:\frac{\mathrm{1}}{{t}\:+{t}^{−\mathrm{1}} }\:\frac{{dt}}{{t}}\:=\int_{\mathrm{1}} ^{{e}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{1}} \\ $$ $$=\left[{arctan}\left({t}\right)\right]_{\mathrm{1}} ^{{e}} ={arctan}\left({e}\right)−{arctan}\left(\mathrm{1}\right)={arctan}\left({e}\right)−\frac{\pi}{\mathrm{4}}\:. \\ $$

Commented byTinkutara last updated on 24/Jan/19

@ajfour Sir My Mains went well above my nervous expectations… I topped in my district Thanks for your continuous support sir And thanks to this wonderful platform… ��

Commented byajfour last updated on 24/Jan/19

Its all a matter of your curiosity   and willingness to learn. I too,  had enjoyed solving your doubts!

$${Its}\:{all}\:{a}\:{matter}\:{of}\:{your}\:{curiosity}\: \\ $$ $${and}\:{willingness}\:{to}\:{learn}.\:{I}\:{too}, \\ $$ $${had}\:{enjoyed}\:{solving}\:{your}\:{doubts}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com