Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53292 by gunawan last updated on 20/Jan/19

∫_0 ^1 e^x^2  dx=..

$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dx}=.. \\ $$

Commented bymaxmathsup by imad last updated on 20/Jan/19

we have e^x^2  =Σ_(n=0) ^∞   (x^(2n) /(n!)) ⇒∫_0 ^1  e^x^2  dx =Σ_(n= 0) ^∞  (1/(n!))∫_0 ^1 x^(2n) dx  =Σ_(n=0) ^(∞ )      (1/((2n+1)n!)) =1 +(1/3) +(1/(5.(2!))) +(1/(7(3!))) +(1/(9(4!))) +....  and we get a best approximation if we take 10 terms of this serie.

$${we}\:{have}\:{e}^{{x}^{\mathrm{2}} } =\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{2}{n}} }{{n}!}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{{x}^{\mathrm{2}} } {dx}\:=\sum_{{n}=\:\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}} {dx} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty\:} \:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right){n}!}\:=\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{3}}\:+\frac{\mathrm{1}}{\mathrm{5}.\left(\mathrm{2}!\right)}\:+\frac{\mathrm{1}}{\mathrm{7}\left(\mathrm{3}!\right)}\:+\frac{\mathrm{1}}{\mathrm{9}\left(\mathrm{4}!\right)}\:+.... \\ $$ $${and}\:{we}\:{get}\:{a}\:{best}\:{approximation}\:{if}\:{we}\:{take}\:\mathrm{10}\:{terms}\:{of}\:{this}\:{serie}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 20/Jan/19

aprroximation  f(x)=e^x^2    f(0)=1 f(1)=e  trapazium area=(1/2)[f(0)+f(1)]×(1−0)  =(1/2)×(1+e)×1=((1+e)/2)=1.86  from graph ...  1<∫_0 ^1 e^x^2  dx<1.86

$${aprroximation} \\ $$ $${f}\left({x}\right)={e}^{{x}^{\mathrm{2}} } \:\:{f}\left(\mathrm{0}\right)=\mathrm{1}\:{f}\left(\mathrm{1}\right)={e} \\ $$ $${trapazium}\:{area}=\frac{\mathrm{1}}{\mathrm{2}}\left[{f}\left(\mathrm{0}\right)+{f}\left(\mathrm{1}\right)\right]×\left(\mathrm{1}−\mathrm{0}\right) \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}×\left(\mathrm{1}+{e}\right)×\mathrm{1}=\frac{\mathrm{1}+{e}}{\mathrm{2}}=\mathrm{1}.\mathrm{86} \\ $$ $${from}\:{graph}\:... \\ $$ $$\mathrm{1}<\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{x}^{\mathrm{2}} } {dx}<\mathrm{1}.\mathrm{86} \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 20/Jan/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com