Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 107790 by Ar Brandon last updated on 12/Aug/20

∫_0 ^1 ln(1+x^2 )dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$

Commented byprakash jain last updated on 12/Aug/20

1+x^2 =(1+ix)(1−ix)

$$\mathrm{1}+{x}^{\mathrm{2}} =\left(\mathrm{1}+{ix}\right)\left(\mathrm{1}−{ix}\right) \\ $$

Commented bymohammad17 last updated on 12/Aug/20

(1+x^2 )=(i+x)(−i+x)

$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right)=\left({i}+{x}\right)\left(−{i}+{x}\right) \\ $$

Commented bymohammad17 last updated on 12/Aug/20

 { ((u=ln(1+x^2 )⇒u^′ =((2x)/(1+x^2 ))dx)),((v^′ =dx⇒v=x)) :}    I=[xln(1+x^2 )]_0 ^1 −2∫_0 ^( 1) ((x^2 +1−1)/(1+x^2 ))dx    I=[xln(1+x^2 )]_0 ^1  −[2x]_0 ^1 +[2tan^(−1) (x)]_0 ^1     I=ln(2)−2+(π/2)    by: mss:Mohammad taha

$$\begin{cases}{{u}={ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\Rightarrow{u}^{'} =\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}}\\{{v}^{'} ={dx}\Rightarrow{v}={x}}\end{cases} \\ $$ $$ \\ $$ $${I}=\left[{xln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{x}^{\mathrm{2}} +\mathrm{1}−\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$ $$ \\ $$ $${I}=\left[{xln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\left[\mathrm{2}{x}\right]_{\mathrm{0}} ^{\mathrm{1}} +\left[\mathrm{2}{tan}^{−\mathrm{1}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$ $$ \\ $$ $${I}={ln}\left(\mathrm{2}\right)−\mathrm{2}+\frac{\pi}{\mathrm{2}} \\ $$ $$ \\ $$ $${by}:\:{mss}:{Mohammad}\:{taha} \\ $$

Commented byAr Brandon last updated on 12/Aug/20

Thanks Sir

Commented byAr Brandon last updated on 12/Aug/20

Thank you

Answered by mathmax by abdo last updated on 12/Aug/20

I =∫_0 ^1 ln(1+x^2 )dx  by parts I=[xln(1+x^2 )]_0 ^1 −∫_0 ^1  x.((2x)/(1+x^2 ))dx  =ln(2)−2 ∫_0 ^1  ((1+x^2 −1)/(1+x^2 ))dx =ln(2)−2 +2 ∫_0 ^1  (dx/(1+x^2 ))  =ln(2)−2 +2[arctanx]_0 ^1  =ln(2)−2+2((π/4)) ⇒  I =ln(2)−2 +(π/2)

$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx}\:\:\mathrm{by}\:\mathrm{parts}\:\mathrm{I}=\left[\mathrm{xln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}.\frac{\mathrm{2x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$ $$=\mathrm{ln}\left(\mathrm{2}\right)−\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:=\mathrm{ln}\left(\mathrm{2}\right)−\mathrm{2}\:+\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$ $$=\mathrm{ln}\left(\mathrm{2}\right)−\mathrm{2}\:+\mathrm{2}\left[\mathrm{arctanx}\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\mathrm{ln}\left(\mathrm{2}\right)−\mathrm{2}+\mathrm{2}\left(\frac{\pi}{\mathrm{4}}\right)\:\Rightarrow \\ $$ $$\mathrm{I}\:=\mathrm{ln}\left(\mathrm{2}\right)−\mathrm{2}\:+\frac{\pi}{\mathrm{2}} \\ $$

Commented byAr Brandon last updated on 12/Aug/20

Merci monsieur��

Commented bymathmax by abdo last updated on 13/Aug/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Answered by hgrocks last updated on 12/Aug/20

I = x.ln(1+x^2 )∣_0 ^1  − 2∫_0 ^1 (x^2 /(1+x^2 )) dx    = ln(2) − 2(1 −∫_0 ^1 (1/(1+x^2 )) dx)    = ln(2) + (π/2) −2  ★HG★

$$\mathrm{I}\:=\:\mathrm{x}.\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\mid_{\mathrm{0}} ^{\mathrm{1}} \:−\:\mathrm{2}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$ $$\:\:=\:\mathrm{ln}\left(\mathrm{2}\right)\:−\:\mathrm{2}\left(\mathrm{1}\:−\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\right) \\ $$ $$\:\:=\:\mathrm{ln}\left(\mathrm{2}\right)\:+\:\frac{\pi}{\mathrm{2}}\:−\mathrm{2} \\ $$ $$\bigstar\mathbb{HG}\bigstar \\ $$

Answered by Dwaipayan Shikari last updated on 12/Aug/20

[xlog(1+x^2 )]_0 ^1 −2∫_0 ^1 (x^2 /(1+x^2 ))  log(2)−2∫_0 ^1 1−(1/(1+x^2 ))  log(2)−2+(π/2)

$$\left[{xlog}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$ $${log}\left(\mathrm{2}\right)−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$ $${log}\left(\mathrm{2}\right)−\mathrm{2}+\frac{\pi}{\mathrm{2}} \\ $$

Commented byAr Brandon last updated on 12/Aug/20

Hi ���� Thanks

Commented byDwaipayan Shikari last updated on 12/Aug/20

����

Answered by hgrocks last updated on 12/Aug/20

Method 2 : Using Series    I = ∫_0 ^1 Σ_(r=1) ^∞ (((−1)^(r−1) )/r) x^(2r) dx    = Σ_(r=1) ^∞ (((−1)^(r−1) )/((2r+1)r))   = 2 Σ_(r=1) ^∞ (((−1)^(r−1) )/((2r+1)(2r)))   = 2 Σ_(r=1) ^∞ (((−1)^(r−1) )/(2r)) − 2 Σ_(r=1) ^∞ (((−1)^(r−1) )/((2r+1)))    S_1  = (1−(1/2)+(1/3)−(1/4)+......) = ln(2)    S_2  = ((1/3) − (1/5) + (1/7)...........) = 1 −  tan^(−1) (1)    So I = S_1 −2S_2  = ln(2)+(π/2) − 2

$$\mathrm{Method}\:\mathrm{2}\::\:\mathrm{Using}\:\mathrm{Series} \\ $$ $$ \\ $$ $$\mathrm{I}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{r}−\mathrm{1}} }{\mathrm{r}}\:\mathrm{x}^{\mathrm{2r}} \mathrm{dx} \\ $$ $$\:\:=\:\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{r}−\mathrm{1}} }{\left(\mathrm{2r}+\mathrm{1}\right)\mathrm{r}} \\ $$ $$\:=\:\mathrm{2}\:\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{r}−\mathrm{1}} }{\left(\mathrm{2r}+\mathrm{1}\right)\left(\mathrm{2r}\right)} \\ $$ $$\:=\:\mathrm{2}\:\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{r}−\mathrm{1}} }{\mathrm{2r}}\:−\:\mathrm{2}\:\underset{\mathrm{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{r}−\mathrm{1}} }{\left(\mathrm{2r}+\mathrm{1}\right)} \\ $$ $$\:\:\mathrm{S}_{\mathrm{1}} \:=\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+......\right)\:=\:\mathrm{ln}\left(\mathrm{2}\right) \\ $$ $$\:\:\mathrm{S}_{\mathrm{2}} \:=\:\left(\frac{\mathrm{1}}{\mathrm{3}}\:−\:\frac{\mathrm{1}}{\mathrm{5}}\:+\:\frac{\mathrm{1}}{\mathrm{7}}...........\right)\:=\:\mathrm{1}\:− \\ $$ $$\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}\right) \\ $$ $$ \\ $$ $$\mathrm{So}\:\mathrm{I}\:=\:\mathrm{S}_{\mathrm{1}} −\mathrm{2S}_{\mathrm{2}} \:=\:\mathrm{ln}\left(\mathrm{2}\right)+\frac{\pi}{\mathrm{2}}\:−\:\mathrm{2} \\ $$

Commented byAr Brandon last updated on 12/Aug/20

Brilliant ! Redmiiuser��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com