Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 7585 by Tawakalitu. last updated on 04/Sep/16

∫_0 ^1 (x/(1 + x^2 )) dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:{dx} \\ $$

Commented bysou1618 last updated on 05/Sep/16

∫_0 ^1 (1/2)×((2x)/(x^2 +1))dx=(1/2)∫_0 ^1 ln(x^2 +1)′dx  =(1/2)[ln(x^2 +1)]_0 ^1   =((ln2)/2)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)'{dx} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$ $$=\frac{{ln}\mathrm{2}}{\mathrm{2}} \\ $$

Commented byTawakalitu. last updated on 05/Sep/16

Thank you sir

$${Thank}\:{you}\:{sir} \\ $$

Commented byFilupSmith last updated on 05/Sep/16

another way to write it.  exactly the same as above  u=x^2 +1   du=2xdx  xdx=(1/2)du  ∫_0 ^( 1) ((xdx)/(x^2 +1))=∫_(x=0) ^( x=1) (1/2) (1/u)du  =(1/2)[ln(u)]_(x=0) ^(x=1)   =(1/2)[ln(x^2 +1)]_0 ^1   =(1/2)(ln(2)+ln(1))  =(1/2)ln(2)

$$\mathrm{another}\:\mathrm{way}\:\mathrm{to}\:\mathrm{write}\:\mathrm{it}. \\ $$ $$\mathrm{exactly}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{above} \\ $$ $${u}={x}^{\mathrm{2}} +\mathrm{1}\: \\ $$ $${du}=\mathrm{2}{xdx} \\ $$ $${xdx}=\frac{\mathrm{1}}{\mathrm{2}}{du} \\ $$ $$\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{xdx}}{{x}^{\mathrm{2}} +\mathrm{1}}=\int_{{x}=\mathrm{0}} ^{\:{x}=\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}\:\frac{\mathrm{1}}{{u}}{du} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{ln}\left({u}\right)\right]_{{x}=\mathrm{0}} ^{{x}=\mathrm{1}} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{ln}\left(\mathrm{2}\right)+\mathrm{ln}\left(\mathrm{1}\right)\right) \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Commented byTawakalitu. last updated on 05/Sep/16

Thank you sir.

$${Thank}\:{you}\:{sir}. \\ $$

Commented by123456 last updated on 05/Sep/16

also  u=x^2 +1  x=0⇒u=1  x=1⇒u=2  ∫_(x=0) ^(x=1) ((xdx)/(x^2 +1))=∫_(u=1) ^(u=2) (du/(2u))=(([ln u]_(u=1) ^(u=2) )/2)=((ln 2)/2)

$$\mathrm{also} \\ $$ $${u}={x}^{\mathrm{2}} +\mathrm{1} \\ $$ $${x}=\mathrm{0}\Rightarrow{u}=\mathrm{1} \\ $$ $${x}=\mathrm{1}\Rightarrow{u}=\mathrm{2} \\ $$ $$\underset{{x}=\mathrm{0}} {\overset{{x}=\mathrm{1}} {\int}}\frac{{xdx}}{{x}^{\mathrm{2}} +\mathrm{1}}=\underset{{u}=\mathrm{1}} {\overset{{u}=\mathrm{2}} {\int}}\frac{{du}}{\mathrm{2}{u}}=\frac{\left[\mathrm{ln}\:{u}\right]_{{u}=\mathrm{1}} ^{{u}=\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com