Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 132089 by rs4089 last updated on 11/Feb/21

∫_0 ^∞ (1/((x^4 −x^2 +1)^3 ))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }{dx} \\ $$

Answered by Lordose last updated on 11/Feb/21

Ω = ∫_0 ^( ∞) (1/((x^4 −x^2 +1)^3 ))dx = ∫_0 ^( ∞) (((1+x^2 )^3 )/((1+x^6 )^3 ))dx  Ω =^(u=x^6 ) (1/6)∫_0 ^( ∞) ((u^(−(5/6)) (1+u^(1/3) )^3 )/((1+u)^3 ))du = (1/6)∫_0 ^( ∞) ((2u^(−(5/6)) +3u^(−(1/2)) +3u^(−(1/6)) )/((1+u)^3 ))du  Ω = (1/3)𝛃((1/6),((17)/6)) + (1/2)𝛃((1/2),(5/2)) + (1/2)𝛃((5/6),((13)/6))  Ω = (1/6)(((2𝚪((1/6))𝚪(((17)/6))+3𝚪((1/2))𝚪((5/2))+3𝚪((5/6))𝚪(((13)/6)))/(𝚪(3))))

$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{4}} −\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\mathrm{dx}\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} }{\left(\mathrm{1}+\mathrm{x}^{\mathrm{6}} \right)^{\mathrm{3}} }\mathrm{dx} \\ $$ $$\Omega\:\overset{\mathrm{u}=\mathrm{x}^{\mathrm{6}} } {=}\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{u}^{−\frac{\mathrm{5}}{\mathrm{6}}} \left(\mathrm{1}+\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)^{\mathrm{3}} }{\left(\mathrm{1}+\mathrm{u}\right)^{\mathrm{3}} }\mathrm{du}\:=\:\frac{\mathrm{1}}{\mathrm{6}}\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{2u}^{−\frac{\mathrm{5}}{\mathrm{6}}} +\mathrm{3u}^{−\frac{\mathrm{1}}{\mathrm{2}}} +\mathrm{3u}^{−\frac{\mathrm{1}}{\mathrm{6}}} }{\left(\mathrm{1}+\mathrm{u}\right)^{\mathrm{3}} }\mathrm{du} \\ $$ $$\Omega\:=\:\frac{\mathrm{1}}{\mathrm{3}}\boldsymbol{\beta}\left(\frac{\mathrm{1}}{\mathrm{6}},\frac{\mathrm{17}}{\mathrm{6}}\right)\:+\:\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\beta}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{5}}{\mathrm{2}}\right)\:+\:\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\beta}\left(\frac{\mathrm{5}}{\mathrm{6}},\frac{\mathrm{13}}{\mathrm{6}}\right) \\ $$ $$\Omega\:=\:\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{2}\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{6}}\right)\boldsymbol{\Gamma}\left(\frac{\mathrm{17}}{\mathrm{6}}\right)+\mathrm{3}\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\boldsymbol{\Gamma}\left(\frac{\mathrm{5}}{\mathrm{2}}\right)+\mathrm{3}\boldsymbol{\Gamma}\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\boldsymbol{\Gamma}\left(\frac{\mathrm{13}}{\mathrm{6}}\right)}{\boldsymbol{\Gamma}\left(\mathrm{3}\right)}\right)\: \\ $$

Commented byAr Brandon last updated on 11/Feb/21

     =(1/6){((2∙((11)/6)∙(5/6)Γ((1/6))Γ((5/6))+3∙(3/2)∙(1/2)Γ^2 ((1/2))+3∙(7/6)∙(1/6)Γ((5/6))Γ((1/6)))/(2∙1))}       =(1/(12)){((55π)/9)+((9π)/4)+((7π)/6)}=(1/(12))∙((220+81+42)/(36))π=((343)/(432))π

$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{6}}\left\{\frac{\mathrm{2}\centerdot\frac{\mathrm{11}}{\mathrm{6}}\centerdot\frac{\mathrm{5}}{\mathrm{6}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{6}}\right)\Gamma\left(\frac{\mathrm{5}}{\mathrm{6}}\right)+\mathrm{3}\centerdot\frac{\mathrm{3}}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{3}\centerdot\frac{\mathrm{7}}{\mathrm{6}}\centerdot\frac{\mathrm{1}}{\mathrm{6}}\Gamma\left(\frac{\mathrm{5}}{\mathrm{6}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{6}}\right)}{\mathrm{2}\centerdot\mathrm{1}}\right\} \\ $$ $$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{12}}\left\{\frac{\mathrm{55}\pi}{\mathrm{9}}+\frac{\mathrm{9}\pi}{\mathrm{4}}+\frac{\mathrm{7}\pi}{\mathrm{6}}\right\}=\frac{\mathrm{1}}{\mathrm{12}}\centerdot\frac{\mathrm{220}+\mathrm{81}+\mathrm{42}}{\mathrm{36}}\pi=\frac{\mathrm{343}}{\mathrm{432}}\pi \\ $$

Commented byLordose last updated on 11/Feb/21

Finishing touches, hahaha

$$\mathrm{Finishing}\:\mathrm{touches},\:\mathrm{hahaha} \\ $$

Commented byAr Brandon last updated on 11/Feb/21

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com