Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79222 by mind is power last updated on 23/Jan/20

∫_0 ^1 (x^n /(Σ_(k=0) ^(n−1) x^k ))dx=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}} }{\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{x}^{{k}} }{dx}=? \\ $$

Commented bymathmax by abdo last updated on 24/Jan/20

at form of serie  let A_n =∫_0 ^1  (x^n /(Σ_(k=0) ^(n−1)  x^k ))dx ⇒  A_n =∫_0 ^1  (x^n /(x^(n−1) /(x−1)))dx =∫_0 ^1  ((x^n (x−1))/(x^n −1))dx =∫_0 ^1  ((x^(n+1) −x^n )/(x^n −1))dx  =∫_0 ^1 (x^(n+1) −x^n )Σ_(k=0) ^∞  x^(kn)  =Σ_(k=0) ^∞  ∫_0 ^1  (x^(n+1+kn) −x^(n+kn) )dx  =Σ_(k=0) ^∞  ∫_0 ^1  (x^((k+1)n+1) −x^((k+1)n) )dx  =Σ_(k=0) ^∞ [(1/((k+1)n+2))x^((k+1)n+2) −(1/((k+1)n +1))x^((k+1)n +1) ]_0 ^1   =Σ_(k=0) ^∞ {(1/((k+1)n+2)) −(1/((k+1)n +1))}=Σ_(k=1) ^∞ {(1/(kn+2))−(1/(kn +1))}  =−Σ_(k=1) ^∞   (1/((kn +1)(kn +2)))   be continued...(rest value of this serie!)

$${at}\:{form}\:{of}\:{serie}\:\:{let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}} }{\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{x}^{{k}} }{dx}\:\Rightarrow \\ $$ $${A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}} }{\frac{{x}^{{n}−\mathrm{1}} }{{x}−\mathrm{1}}}{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}} \left({x}−\mathrm{1}\right)}{{x}^{{n}} −\mathrm{1}}{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}+\mathrm{1}} −{x}^{{n}} }{{x}^{{n}} −\mathrm{1}}{dx} \\ $$ $$=\int_{\mathrm{0}} ^{\mathrm{1}} \left({x}^{{n}+\mathrm{1}} −{x}^{{n}} \right)\sum_{{k}=\mathrm{0}} ^{\infty} \:{x}^{{kn}} \:=\sum_{{k}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({x}^{{n}+\mathrm{1}+{kn}} −{x}^{{n}+{kn}} \right){dx} \\ $$ $$=\sum_{{k}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\left({x}^{\left({k}+\mathrm{1}\right){n}+\mathrm{1}} −{x}^{\left({k}+\mathrm{1}\right){n}} \right){dx} \\ $$ $$=\sum_{{k}=\mathrm{0}} ^{\infty} \left[\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right){n}+\mathrm{2}}{x}^{\left({k}+\mathrm{1}\right){n}+\mathrm{2}} −\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right){n}\:+\mathrm{1}}{x}^{\left({k}+\mathrm{1}\right){n}\:+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$ $$=\sum_{{k}=\mathrm{0}} ^{\infty} \left\{\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right){n}+\mathrm{2}}\:−\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right){n}\:+\mathrm{1}}\right\}=\sum_{{k}=\mathrm{1}} ^{\infty} \left\{\frac{\mathrm{1}}{{kn}+\mathrm{2}}−\frac{\mathrm{1}}{{kn}\:+\mathrm{1}}\right\} \\ $$ $$=−\sum_{{k}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({kn}\:+\mathrm{1}\right)\left({kn}\:+\mathrm{2}\right)}\:\:\:{be}\:{continued}...\left({rest}\:{value}\:{of}\:{this}\:{serie}!\right) \\ $$

Commented bymind is power last updated on 24/Jan/20

nice sir thank you

$${nice}\:{sir}\:{thank}\:{you} \\ $$

Commented byabdomathmax last updated on 24/Jan/20

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com