Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 58222 by salahahmed last updated on 20/Apr/19

∫_0 ^1 x^x dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{x}} {dx} \\ $$

Commented bymaxmathsup by imad last updated on 21/Apr/19

we have x^x  =e^(xln(x))  ⇒∫_0 ^1  x^x dx =∫_0 ^1  (Σ_(n=0) ^∞  ((x^n (ln(x))^n )/(n!)))dx  =Σ_(n=0) ^∞   (1/(n!)) ∫_0 ^1  x^n (ln(x))^n  dx  let A_(n,p) =∫_0 ^1  x^n (ln(x))^p dx   by parts   u^′  =x^n  and v =(ln(x))^p  ⇒u =(1/(n+1))x^(n+1)  and v^′  =(p/x)(ln(x))^(p−1)  ⇒  A_(n,p)  =[(1/(n+1))x^(n+1)  (ln(x))^p ]_0 ^1  −∫_0 ^1  (1/(n+1))x^(n+1)  (p/x) (ln(x))^(p−1)  dx  =−(p/(n+1)) ∫_0 ^1  x^n   (ln(x))^(p−1)  =−(p/(n+1)) A_(n,p−1)  =(((−1)^2 p(p−1))/((n+1)^2 )) A_(n,p−2)   =(((−1)^p  p!)/((n+1)^p )) A_(n,0)      but  A_(n,o) = ∫_0 ^1  x^n  =(1/(n+1)) ⇒  A_(n,p) =(((−1)^p p!)/((n+1)^(p+1) )) ⇒A_(n,n) = (((−1)^n n!)/((n+1)^(n+1) )) ⇒  ∫_0 ^1  x^x  dx =Σ_(n=0) ^∞    (((−1)^n )/((n+1)^(n+1) )) =1−(1/2^2 ) +(1/3^3 ) −(1/4^4 ) +....

$${we}\:{have}\:{x}^{{x}} \:={e}^{{xln}\left({x}\right)} \:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{x}} {dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}} \left({ln}\left({x}\right)\right)^{{n}} }{{n}!}\right){dx} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}!}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \left({ln}\left({x}\right)\right)^{{n}} \:{dx}\:\:{let}\:{A}_{{n},{p}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \left({ln}\left({x}\right)\right)^{{p}} {dx}\:\:\:{by}\:{parts}\: \\ $$ $${u}^{'} \:={x}^{{n}} \:{and}\:{v}\:=\left({ln}\left({x}\right)\right)^{{p}} \:\Rightarrow{u}\:=\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \:{and}\:{v}^{'} \:=\frac{{p}}{{x}}\left({ln}\left({x}\right)\right)^{{p}−\mathrm{1}} \:\Rightarrow \\ $$ $${A}_{{n},{p}} \:=\left[\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \:\left({ln}\left({x}\right)\right)^{{p}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}}{{n}+\mathrm{1}}{x}^{{n}+\mathrm{1}} \:\frac{{p}}{{x}}\:\left({ln}\left({x}\right)\right)^{{p}−\mathrm{1}} \:{dx} \\ $$ $$=−\frac{{p}}{{n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:\:\left({ln}\left({x}\right)\right)^{{p}−\mathrm{1}} \:=−\frac{{p}}{{n}+\mathrm{1}}\:{A}_{{n},{p}−\mathrm{1}} \:=\frac{\left(−\mathrm{1}\right)^{\mathrm{2}} {p}\left({p}−\mathrm{1}\right)}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:{A}_{{n},{p}−\mathrm{2}} \\ $$ $$=\frac{\left(−\mathrm{1}\right)^{{p}} \:{p}!}{\left({n}+\mathrm{1}\right)^{{p}} }\:{A}_{{n},\mathrm{0}} \:\:\:\:\:{but}\:\:{A}_{{n},{o}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:=\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\Rightarrow \\ $$ $${A}_{{n},{p}} =\frac{\left(−\mathrm{1}\right)^{{p}} {p}!}{\left({n}+\mathrm{1}\right)^{{p}+\mathrm{1}} }\:\Rightarrow{A}_{{n},{n}} =\:\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{x}} \:{dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }\:−\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{4}} }\:+.... \\ $$

Commented bymaxmathsup by imad last updated on 21/Apr/19

if we want a best approximation of ∫_0 ^1  x^x  dx  we can take 10 terms of the   serie .

$${if}\:{we}\:{want}\:{a}\:{best}\:{approximation}\:{of}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{x}} \:{dx}\:\:{we}\:{can}\:{take}\:\mathrm{10}\:{terms}\:{of}\:{the}\: \\ $$ $${serie}\:. \\ $$

Commented bysalahahmed last updated on 21/Apr/19

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented bymaxmathsup by imad last updated on 21/Apr/19

you are welcome .

$${you}\:{are}\:{welcome}\:. \\ $$

Answered by Kunal12588 last updated on 20/Apr/19

∫_0 ^1 x^x  dx=[(x^(x+1) /(x+1))]_0 ^1   =(1^(1+1) /(1+1))−(0^(0+1) /(0+1))  =(1/2)−0=(1/2)  is this correct?

$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{x}} \:{dx}=\left[\frac{{x}^{{x}+\mathrm{1}} }{{x}+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$ $$=\frac{\mathrm{1}^{\mathrm{1}+\mathrm{1}} }{\mathrm{1}+\mathrm{1}}−\frac{\mathrm{0}^{\mathrm{0}+\mathrm{1}} }{\mathrm{0}+\mathrm{1}} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{0}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$ $${is}\:{this}\:{correct}? \\ $$

Commented bymr W last updated on 20/Apr/19

that′s wrong sir, because  ((x^(x+1) /(x+1)))^′ ≠x^x .  in  ∫x^n dx=(x^(n+1) /(n+1))+C   n must be constant w.r.t. x.

$${that}'{s}\:{wrong}\:{sir},\:{because} \\ $$ $$\left(\frac{{x}^{{x}+\mathrm{1}} }{{x}+\mathrm{1}}\right)^{'} \neq{x}^{{x}} . \\ $$ $${in}\:\:\int{x}^{{n}} {dx}=\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}+{C}\:\:\:{n}\:{must}\:{be}\:{constant}\:{w}.{r}.{t}.\:{x}. \\ $$

Commented byKunal12588 last updated on 20/Apr/19

Ohh.. Thanks sir. So how can we solve that.

Answered by MJS last updated on 20/Apr/19

≈.7834305109

$$\approx.\mathrm{7834305109} \\ $$

Commented bysalahahmed last updated on 20/Apr/19

how? what is the way?

$$\mathrm{how}?\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{way}? \\ $$

Commented byMJS last updated on 20/Apr/19

you can only approximate by lower sums  and upper sums

$$\mathrm{you}\:\mathrm{can}\:\mathrm{only}\:\mathrm{approximate}\:\mathrm{by}\:\mathrm{lower}\:\mathrm{sums} \\ $$ $$\mathrm{and}\:\mathrm{upper}\:\mathrm{sums} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com