Question Number 90424 by john santu last updated on 23/Apr/20 | ||
![]() | ||
$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\underset{\frac{\mathrm{1}}{\mathrm{2}}{y}} {\overset{\mathrm{1}} {\int}}\:{e}^{−{x}^{\mathrm{2}} } \:{dxdy}\:=\:?\: \\ $$ | ||
Commented byjohn santu last updated on 23/Apr/20 | ||
![]() | ||
$${change}\:{order}\: \\ $$ $$\mathrm{0}\:<{y}<\mathrm{2}\:,\:\frac{\mathrm{1}}{\mathrm{2}}{y}<{x}<\mathrm{1} \\ $$ $$\Rightarrow\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\underset{\mathrm{0}} {\overset{\mathrm{2}{x}} {\int}}\:{e}^{−{x}^{\mathrm{2}} } \:{dy}\:{dx}\:=\: \\ $$ $$\left.\int\underset{\mathrm{0}} {\overset{\mathrm{1}} {\:}}\:{ye}^{−{x}^{\mathrm{2}} } \:\right]_{\mathrm{0}} ^{\mathrm{2}{x}} \:{dx}\:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\mathrm{2}{xe}^{−{x}^{\mathrm{2}} } \:{dx}\: \\ $$ $$\left.=\:−{e}^{−{x}^{\mathrm{2}} } \:\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\:−\frac{\mathrm{1}}{{e}}+\mathrm{1}\: \\ $$ | ||