Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 150489 by mathdanisur last updated on 12/Aug/21

∫_( 0) ^( 2)  ∣x∣ x^([x+1])  sgn(x) dx = ?

$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{2}} {\int}}\:\mid\mathrm{x}\mid\:\mathrm{x}^{\left[\boldsymbol{\mathrm{x}}+\mathrm{1}\right]} \:\mathrm{sgn}\left(\mathrm{x}\right)\:\mathrm{dx}\:=\:? \\ $$

Answered by Olaf_Thorendsen last updated on 12/Aug/21

I = ∫_0 ^2 ∣x∣.x^([x+1]) sgn(x) dx  I = ∫_0 ^2 x.x^([x+1]) (+1) dx  I = ∫_0 ^1 x.x^([x+1])  dx+∫_1 ^2 x.x^([x+1])  dx  I = ∫_0 ^1 x.x^1  dx+∫_1 ^2 x.x^2  dx  I = ∫_0 ^1 x^2  dx+∫_1 ^2 x^3  dx  I = [(x^3 /3)]_0 ^1 +[(x^4 /4)]_1 ^2   I = (1/3)+((15)/4) = ((49)/(12))

$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}} \mid{x}\mid.{x}^{\left[{x}+\mathrm{1}\right]} \mathrm{sgn}\left({x}\right)\:{dx} \\ $$ $$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}} {x}.{x}^{\left[{x}+\mathrm{1}\right]} \left(+\mathrm{1}\right)\:{dx} \\ $$ $$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}.{x}^{\left[{x}+\mathrm{1}\right]} \:{dx}+\int_{\mathrm{1}} ^{\mathrm{2}} {x}.{x}^{\left[{x}+\mathrm{1}\right]} \:{dx} \\ $$ $$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}.{x}^{\mathrm{1}} \:{dx}+\int_{\mathrm{1}} ^{\mathrm{2}} {x}.{x}^{\mathrm{2}} \:{dx} \\ $$ $$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \:{dx}+\int_{\mathrm{1}} ^{\mathrm{2}} {x}^{\mathrm{3}} \:{dx} \\ $$ $$\mathrm{I}\:=\:\left[\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{0}} ^{\mathrm{1}} +\left[\frac{{x}^{\mathrm{4}} }{\mathrm{4}}\right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$ $$\mathrm{I}\:=\:\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{15}}{\mathrm{4}}\:=\:\frac{\mathrm{49}}{\mathrm{12}} \\ $$

Commented bymathdanisur last updated on 12/Aug/21

Cool See thankyou  If ∫_0 ^2  [x] x^([x+1] ) sgn(x)dx

$$\mathrm{Cool}\:\mathrm{See}\:\mathrm{thankyou} \\ $$ $$\mathrm{If}\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\left[\mathrm{x}\right]\:\mathrm{x}^{\left[\mathrm{x}+\mathrm{1}\right]\:} \mathrm{sgn}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Commented byOlaf_Thorendsen last updated on 13/Aug/21

J = ∫_0 ^2 [x].x^([x+1]) sgn(x) dx  J = ∫_0 ^2 [x].x^([x+1]) (+1) dx  J = ∫_0 ^1 [x].x^([x+1])  dx+∫_1 ^2 [x].x^([x+1])  dx  J = ∫_0 ^1 0.x^1  dx+∫_1 ^2 1.x^2  dx  J = ∫_1 ^2 x^2  dx  J = [(x^3 /3)]_1 ^2   J = (8/3)−(1/3) = (7/3)

$$\mathrm{J}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}} \left[{x}\right].{x}^{\left[{x}+\mathrm{1}\right]} \mathrm{sgn}\left({x}\right)\:{dx} \\ $$ $$\mathrm{J}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}} \left[{x}\right].{x}^{\left[{x}+\mathrm{1}\right]} \left(+\mathrm{1}\right)\:{dx} \\ $$ $$\mathrm{J}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left[{x}\right].{x}^{\left[{x}+\mathrm{1}\right]} \:{dx}+\int_{\mathrm{1}} ^{\mathrm{2}} \left[{x}\right].{x}^{\left[{x}+\mathrm{1}\right]} \:{dx} \\ $$ $$\mathrm{J}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{0}.{x}^{\mathrm{1}} \:{dx}+\int_{\mathrm{1}} ^{\mathrm{2}} \mathrm{1}.{x}^{\mathrm{2}} \:{dx} \\ $$ $$\mathrm{J}\:=\:\int_{\mathrm{1}} ^{\mathrm{2}} {x}^{\mathrm{2}} \:{dx} \\ $$ $$\mathrm{J}\:=\:\left[\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$ $$\mathrm{J}\:=\:\frac{\mathrm{8}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\:=\:\frac{\mathrm{7}}{\mathrm{3}} \\ $$

Commented bymathdanisur last updated on 13/Aug/21

Cool Ser thankyou

$$\mathrm{Cool}\:\mathrm{Ser}\:\mathrm{thankyou} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com