Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 43145 by rahul 19 last updated on 07/Sep/18

∫_0 ^∞  [ 2e^(−x) ]dx = ?   where [.]= gif.

$$\int_{\mathrm{0}} ^{\infty} \:\left[\:\mathrm{2e}^{−{x}} \right]{dx}\:=\:?\: \\ $$ $${where}\:\left[.\right]=\:{gif}. \\ $$

Commented bymaxmathsup by imad last updated on 07/Sep/18

changement 2 e^(−x)  =t give e^(−x) =(t/2) ⇒−x=ln((t/2)) ⇒x=−ln((t/2)) and  I = ∫_0 ^∞   [ 2 e^(−x) ]dx =−∫_0 ^2  [t](−(1/t))dt = ∫_0 ^2   (([t])/t)dt  = ∫_0 ^1  (0/t)dt +∫_1 ^2  (1/t)dt = [ln∣t∣]_1 ^2   =ln(2) .

$${changement}\:\mathrm{2}\:{e}^{−{x}} \:={t}\:{give}\:{e}^{−{x}} =\frac{{t}}{\mathrm{2}}\:\Rightarrow−{x}={ln}\left(\frac{{t}}{\mathrm{2}}\right)\:\Rightarrow{x}=−{ln}\left(\frac{{t}}{\mathrm{2}}\right)\:{and} \\ $$ $${I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\left[\:\mathrm{2}\:{e}^{−{x}} \right]{dx}\:=−\int_{\mathrm{0}} ^{\mathrm{2}} \:\left[{t}\right]\left(−\frac{\mathrm{1}}{{t}}\right){dt}\:=\:\int_{\mathrm{0}} ^{\mathrm{2}} \:\:\frac{\left[{t}\right]}{{t}}{dt} \\ $$ $$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{0}}{{t}}{dt}\:+\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\mathrm{1}}{{t}}{dt}\:=\:\left[{ln}\mid{t}\mid\right]_{\mathrm{1}} ^{\mathrm{2}} \:\:={ln}\left(\mathrm{2}\right)\:. \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 07/Sep/18

Commented byrahul 19 last updated on 08/Sep/18

thanks prof abdo.

$$\mathrm{thanks}\:\mathrm{prof}\:\mathrm{abdo}. \\ $$

Commented bymath khazana by abdo last updated on 08/Sep/18

look sir raul x=−ln(t)+ln(2) ⇒dx =−(dt/t)

$${look}\:{sir}\:{raul}\:{x}=−{ln}\left({t}\right)+{ln}\left(\mathrm{2}\right)\:\Rightarrow{dx}\:=−\frac{{dt}}{{t}} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 07/Sep/18

∫_0 ^(0.7) [2e^(−x) ]dx+∫_(0.7) ^∞ [2e^(−x) ]dx  =∫_0 ^(0.7) 1×dx+∫_(0.7) ^∞ 0×dx  =0.7  ln2≈0.7

$$\int_{\mathrm{0}} ^{\mathrm{0}.\mathrm{7}} \left[\mathrm{2}{e}^{−{x}} \right]{dx}+\int_{\mathrm{0}.\mathrm{7}} ^{\infty} \left[\mathrm{2}{e}^{−{x}} \right]{dx} \\ $$ $$=\int_{\mathrm{0}} ^{\mathrm{0}.\mathrm{7}} \mathrm{1}×{dx}+\int_{\mathrm{0}.\mathrm{7}} ^{\infty} \mathrm{0}×{dx} \\ $$ $$=\mathrm{0}.\mathrm{7} \\ $$ $${ln}\mathrm{2}\approx\mathrm{0}.\mathrm{7} \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 07/Sep/18

Commented byrahul 19 last updated on 08/Sep/18

thanks sir.

$$\mathrm{thanks}\:\mathrm{sir}. \\ $$

Commented byabdo.msup.com last updated on 08/Sep/18

nevermind sir...

$${nevermind}\:{sir}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com