Question Number 10495 by ajfour last updated on 14/Feb/17 | ||
![]() | ||
$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{Rr}\mathrm{cos}\:\theta}\:{d}\theta \\ $$ | ||
Answered by robocop last updated on 14/Feb/17 | ||
![]() | ||
$${todo}\:{en}\:{funcion}\:{de}\:\theta \\ $$ $$ \\ $$ $$\mathrm{0}\leqslant\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{Rrcos}\theta}\:\:\leqslant\mathrm{2}\pi \\ $$ $$\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{Rrcos}\theta\:\:\:}\:\leqslant\mathrm{2}\pi \\ $$ $${R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{Rrcos}\theta\leqslant\mathrm{4}\pi^{\mathrm{2}} \\ $$ $$−\mathrm{2}{Rrcos}\theta\leqslant\mathrm{4}\pi^{\mathrm{2}} −{R}^{\mathrm{2}} −{r}^{\mathrm{2}} \\ $$ $$\mathrm{2}{Rrcos}\theta\geqslant{R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{4}\pi^{\mathrm{2}} \\ $$ $${cos}\theta\geqslant\frac{{R}^{\mathrm{2}} +{r}^{\mathrm{2}^{} } −\mathrm{4}\pi^{\mathrm{2}} }{\mathrm{2}{Rr}} \\ $$ $$ \\ $$ $$\sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{Rrcos}\theta}\:\:\geqslant\mathrm{0} \\ $$ $${R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{Rrcos}\theta\geqslant\mathrm{0} \\ $$ $${cos}\theta\leqslant\frac{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{2}{Rr}} \\ $$ $$ \\ $$ $$\int_{\frac{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{4}\pi^{\mathrm{2}\:\:} }{\mathrm{2}{Rr}}} ^{\frac{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{2}{Rr}}} \sqrt{{R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{Rrcos}\theta}\:{d}\theta=\frac{\mathrm{2}}{\mathrm{3}}\left({R}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{4}\pi^{\mathrm{2}} \right)+{C} \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ | ||
Commented byajfour last updated on 16/Feb/17 | ||
![]() | ||
$${not}\:{satisfied}. \\ $$ | ||