Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 45063 by rahul 19 last updated on 08/Oct/18

∫_0 ^(2π) e^(cos θ) cos (sin θ)dθ = ?

$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} {e}^{\mathrm{cos}\:\theta} \mathrm{cos}\:\left(\mathrm{sin}\:\theta\right){d}\theta\:=\:? \\ $$

Commented bymaxmathsup by imad last updated on 08/Oct/18

I =Re( ∫_0 ^(2π)  e^(cosθ+isinθ) dθ)  but e^(cosθ+isinθ)  =e^e^(iθ)   =Σ_(n=0) ^∞  (((e^(iθ) )^n )/(n!))  =Σ_(n=0) ^∞    (e^(inθ) /(n!)) =Σ_(n=0) ^∞   ((cos(nθ))/(n!)) +i Σ_(n=0) ^∞  ((sin(nθ))/(n!)) ⇒  ∫_0 ^(2π)  e^e^(iθ)  dθ =Σ_(n=0) ^∞  (1/(n!))∫_0 ^(2π) cos(nθ)dθ +i Σ_(n=0) ^∞  (1/(n!)) ∫_0 ^(2π)  sin(nθ)dθ  =2π +Σ_(n=1) ^∞  ∫_0 ^(2π) cos(nθ)dθ +iΣ_(n=1) ^∞  (1/(n!)) ∫_0 ^(2π)  sin(nθ)dθ but  ∫_0 ^(2π) cos(nθ)dθ =[(1/n)sin(nθ)]_0 ^(2π) =0  (n≥1) also  ∫_0 ^(2π) sin(nθ)dθ =[−(1/n)cos(nθ)]_0 ^(2π)  =0 (n≥1) ⇒∫_0 ^(2π)   e^e^(iθ)  dθ =2π ⇒  ∫_0 ^(2π)  e^(cosθ)  cos(sinθ)dθ =2π .

$${I}\:={Re}\left(\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{e}^{{cos}\theta+{isin}\theta} {d}\theta\right)\:\:{but}\:{e}^{{cos}\theta+{isin}\theta} \:={e}^{{e}^{{i}\theta} } \:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left({e}^{{i}\theta} \right)^{{n}} }{{n}!} \\ $$ $$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{{in}\theta} }{{n}!}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{cos}\left({n}\theta\right)}{{n}!}\:+{i}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{sin}\left({n}\theta\right)}{{n}!}\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{e}^{{e}^{{i}\theta} } {d}\theta\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\int_{\mathrm{0}} ^{\mathrm{2}\pi} {cos}\left({n}\theta\right){d}\theta\:+{i}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{sin}\left({n}\theta\right){d}\theta \\ $$ $$=\mathrm{2}\pi\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\int_{\mathrm{0}} ^{\mathrm{2}\pi} {cos}\left({n}\theta\right){d}\theta\:+{i}\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{sin}\left({n}\theta\right){d}\theta\:{but} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{2}\pi} {cos}\left({n}\theta\right){d}\theta\:=\left[\frac{\mathrm{1}}{{n}}{sin}\left({n}\theta\right)\right]_{\mathrm{0}} ^{\mathrm{2}\pi} =\mathrm{0}\:\:\left({n}\geqslant\mathrm{1}\right)\:{also} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{2}\pi} {sin}\left({n}\theta\right){d}\theta\:=\left[−\frac{\mathrm{1}}{{n}}{cos}\left({n}\theta\right)\right]_{\mathrm{0}} ^{\mathrm{2}\pi} \:=\mathrm{0}\:\left({n}\geqslant\mathrm{1}\right)\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:{e}^{{e}^{{i}\theta} } {d}\theta\:=\mathrm{2}\pi\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:{e}^{{cos}\theta} \:{cos}\left({sin}\theta\right){d}\theta\:=\mathrm{2}\pi\:. \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 08/Oct/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com