Question Number 41351 by vajpaithegrate@gmail.com last updated on 06/Aug/18 | ||
![]() | ||
$$\int_{\mathrm{0}} ^{\infty} \left[\frac{\mathrm{5}}{\mathrm{e}^{\mathrm{x}} }\right]\mathrm{dx}= \\ $$ | ||
Commented bymath khazana by abdo last updated on 06/Aug/18 | ||
![]() | ||
$${let}\:{I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\left[\frac{\mathrm{5}}{{e}^{{x}} }\right]{dx}\:{changement}\:\:\frac{\mathrm{5}}{{e}^{{x}} }\:={t}\:{give} \\ $$ $${e}^{{x}} =\frac{\mathrm{5}}{{t}}\:\Rightarrow\:{x}={ln}\left(\frac{\mathrm{5}}{{t}}\right)\:={ln}\left(\mathrm{5}\right)−{ln}\left({t}\right)\:\Rightarrow{dx}=−\frac{\mathrm{1}}{{t}}{dt} \\ $$ $${I}\:=−\:\int_{\mathrm{5}} ^{\mathrm{0}} \:\:\left[{t}\right]\frac{−{dt}}{{t}}\:=\:−\int_{\mathrm{0}} ^{\mathrm{5}} \:\:\frac{\left[{t}\right]}{{t}}\:{dt} \\ $$ $$=−\sum_{{k}=\mathrm{0}} ^{\mathrm{4}} \:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\frac{{k}}{{t}}\:{dt}\:=−\sum_{{k}=\mathrm{1}} ^{\mathrm{4}} \:\int_{{k}} ^{{k}+\mathrm{1}} \:\frac{{k}}{{t}}{dt} \\ $$ $$=−\sum_{{k}=\mathrm{1}} ^{\mathrm{4}} {k}\:\left\{{ln}\left({k}+\mathrm{1}\right)−{ln}\left({k}\right)\right\} \\ $$ $$=\sum_{{k}=\mathrm{1}} ^{\mathrm{4}} {k}\left\{{ln}\left({k}\right)−{ln}\left({k}+\mathrm{1}\right)\right\} \\ $$ $$=−{ln}\left(\mathrm{2}\right)+\mathrm{2}\left\{{ln}\left(\mathrm{2}\right)−{ln}\left(\mathrm{3}\right)\right\}\:+\mathrm{3}\left\{{ln}\left(\mathrm{3}\right)−\mathrm{2}{ln}\left(\mathrm{2}\right)\right\} \\ $$ $$+\mathrm{4}\left\{\mathrm{2}{ln}\left(\mathrm{2}\right)−{ln}\left(\mathrm{5}\right)\right. \\ $$ $$\left.=−{ln}\mathrm{2}\right)+\mathrm{2}{ln}\left(\mathrm{2}\right)−\mathrm{2}{ln}\left(\mathrm{3}\right)+\mathrm{3}{ln}\left(\mathrm{3}\right)−\mathrm{6}{ln}\left(\mathrm{2}\right) \\ $$ $$+\mathrm{8}{ln}\left(\mathrm{2}\right)−\mathrm{4}{ln}\left(\mathrm{5}\right) \\ $$ $${I}\:=\mathrm{3}{ln}\left(\mathrm{2}\right)\:+\mathrm{3}{ln}\left(\mathrm{3}\right)−\mathrm{4}{ln}\left(\mathrm{5}\right)\:. \\ $$ $$ \\ $$ | ||
Commented byvajpaithegrate@gmail.com last updated on 06/Aug/18 | ||
![]() | ||
$$\mathrm{thank}\:\mathrm{u}\:\mathrm{sir} \\ $$ | ||
Commented bymath khazana by abdo last updated on 06/Aug/18 | ||
![]() | ||
$${nevermind}\:{sir} \\ $$ | ||
Answered by MJS last updated on 06/Aug/18 | ||
![]() | ||
$${f}\left({x}\right)=\left[\frac{\mathrm{5}}{\mathrm{e}^{{x}} }\right] \\ $$ $$\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{6}}<{x}\leqslant\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{5}}\:=\mathrm{0}\:\Rightarrow\:{f}\left({x}\right)=\mathrm{5} \\ $$ $$\mathrm{0}<{x}\leqslant\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{4}}\:\Rightarrow\:{f}\left({x}\right)=\mathrm{4} \\ $$ $$\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{4}}<{x}\leqslant\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{3}}\:\Rightarrow\:{f}\left({x}\right)=\mathrm{3} \\ $$ $$\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{3}}<{x}\leqslant\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{2}}\:\Rightarrow\:{f}\left({x}\right)=\mathrm{2} \\ $$ $$\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{2}}<{x}\leqslant\mathrm{ln}\:\mathrm{5}\:\Rightarrow\:{f}\left({x}\right)=\mathrm{1} \\ $$ $${x}>\mathrm{ln}\:\mathrm{5}\:\Rightarrow\:{f}\left({x}\right)=\mathrm{0} \\ $$ $$\Rightarrow \\ $$ $$\underset{\mathrm{0}} {\overset{\infty} {\int}}\left[\frac{\mathrm{5}}{\mathrm{e}^{{x}} }\right]{dx}=\mathrm{4ln}\:\frac{\mathrm{5}}{\mathrm{4}}\:+\mathrm{3}\left(\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{3}}\:−\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{4}}\right)+\mathrm{2}\left(\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{2}}\:−\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{3}}\right)+\mathrm{ln}\:\mathrm{5}\:−\mathrm{ln}\:\frac{\mathrm{5}}{\mathrm{2}}= \\ $$ $$=\mathrm{ln}\:\frac{\mathrm{625}}{\mathrm{24}}\:\approx\mathrm{3}.\mathrm{25970} \\ $$ | ||
Commented byvajpaithegrate@gmail.com last updated on 06/Aug/18 | ||
![]() | ||
$$\mathrm{thank}\:\mathrm{u}\:\mathrm{sir} \\ $$ | ||