Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 85676 by john santu last updated on 24/Mar/20

∫ _0 ^∞  (dx/((x+(√(1+x^2 )))^2 ))  let x = tan t ⇒dx=sec^2 t dt  ∫_0 ^(π/2)  ((sec^2 t dt)/((tan t+sec t)^2 )) =   ∫_0 ^(π/2)  (dt/((sin t+1)^2 )) = ∫_0 ^(π/2)  (dt/((cos (1/2)t+sin (1/2)t)^4 ))  = ∫_0 ^(π/2)  (dt/(4cos^4  ((1/2)t−(π/4))))  = (1/4)∫_0 ^(π/2)  sec^4 ((1/2)t−(π/4)) dt  [ let (1/2)t−(π/4)= u]  = (1/4)∫_(−(π/4)) ^0  sec^4 u ×2du  =(1/2)∫ _(−(π/4)) ^0 (tan^2 u+1) d(tan u)  = (1/2) [(1/3)tan^3 u + tan u ]_(−(π/4)) ^0   = (1/2) [ 0−(−(1/3)−1)]= (2/3)

$$\int\underset{\mathrm{0}} {\overset{\infty} {\:}}\:\frac{{dx}}{\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} } \\ $$ $${let}\:{x}\:=\:\mathrm{tan}\:{t}\:\Rightarrow{dx}=\mathrm{sec}\:^{\mathrm{2}} {t}\:{dt} \\ $$ $$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{sec}\:^{\mathrm{2}} {t}\:{dt}}{\left(\mathrm{tan}\:{t}+\mathrm{sec}\:{t}\right)^{\mathrm{2}} }\:=\: \\ $$ $$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dt}}{\left(\mathrm{sin}\:{t}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dt}}{\left(\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}{t}+\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{2}}{t}\right)^{\mathrm{4}} } \\ $$ $$=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{{dt}}{\mathrm{4cos}^{\mathrm{4}} \:\left(\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\pi}{\mathrm{4}}\right)} \\ $$ $$=\:\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\mathrm{sec}\:^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\pi}{\mathrm{4}}\right)\:{dt} \\ $$ $$\left[\:{let}\:\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\pi}{\mathrm{4}}=\:{u}\right] \\ $$ $$=\:\frac{\mathrm{1}}{\mathrm{4}}\underset{−\frac{\pi}{\mathrm{4}}} {\overset{\mathrm{0}} {\int}}\:\mathrm{sec}\:^{\mathrm{4}} {u}\:×\mathrm{2}{du} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\int\underset{−\frac{\pi}{\mathrm{4}}} {\overset{\mathrm{0}} {\:}}\left(\mathrm{tan}\:^{\mathrm{2}} {u}+\mathrm{1}\right)\:{d}\left(\mathrm{tan}\:{u}\right) \\ $$ $$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}\:^{\mathrm{3}} {u}\:+\:\mathrm{tan}\:{u}\:\right]_{−\frac{\pi}{\mathrm{4}}} ^{\mathrm{0}} \\ $$ $$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left[\:\mathrm{0}−\left(−\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}\right)\right]=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$ $$ \\ $$

Commented byjagoll last updated on 24/Mar/20

i try by  Euler substitution  let (√(1+x^2 )) = x+t   1+x^2  = x^2 +2xt+t^2   2xt+t^2 =1 ⇒ x = ((1−t^2 )/(2t))  dx = ((−t^2 −1)/(2t^2 )) dt  ∫ (1/((((1−t^2 )/(2t))+((1+t^2 )/(2t)))^2 )) × (((−t^2 −1)/(2t^2 ))) dt  ∫ (t^2 /(2t^2 )) ×(−t^2 −1) dt = −(1/2)∫ (t^2 +1)dt  −(1/2) [(1/3)t^3 +t ] =−(1/6)t [t^2 +3 ]  −(1/6) ((√(1+x^2 )) −x ) (2x^2 +4−2x(√(1+x^2 )) )  lim_(x→∞)  −(1/6)((√(1+x^2 ))−x)(2x^2 +4−2x(√(1+x^2 ))) +(4/6)  = (2/3)

$$\mathrm{i}\:\mathrm{try}\:\mathrm{by}\:\:\mathrm{Euler}\:\mathrm{substitution} \\ $$ $$\mathrm{let}\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:=\:\mathrm{x}+\mathrm{t}\: \\ $$ $$\mathrm{1}+\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{2xt}+\mathrm{t}^{\mathrm{2}} \\ $$ $$\mathrm{2xt}+\mathrm{t}^{\mathrm{2}} =\mathrm{1}\:\Rightarrow\:\mathrm{x}\:=\:\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\mathrm{2t}} \\ $$ $$\mathrm{dx}\:=\:\frac{−\mathrm{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2t}^{\mathrm{2}} }\:\mathrm{dt} \\ $$ $$\int\:\frac{\mathrm{1}}{\left(\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\mathrm{2t}}+\frac{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }{\mathrm{2t}}\right)^{\mathrm{2}} }\:×\:\left(\frac{−\mathrm{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2t}^{\mathrm{2}} }\right)\:\mathrm{dt} \\ $$ $$\int\:\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2t}^{\mathrm{2}} }\:×\left(−\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)\:\mathrm{dt}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\int\:\left(\mathrm{t}^{\mathrm{2}} +\mathrm{1}\right)\mathrm{dt} \\ $$ $$−\frac{\mathrm{1}}{\mathrm{2}}\:\left[\frac{\mathrm{1}}{\mathrm{3}}\mathrm{t}^{\mathrm{3}} +\mathrm{t}\:\right]\:=−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{t}\:\left[\mathrm{t}^{\mathrm{2}} +\mathrm{3}\:\right] \\ $$ $$−\frac{\mathrm{1}}{\mathrm{6}}\:\left(\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:−\mathrm{x}\:\right)\:\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{4}−\mathrm{2x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\right) \\ $$ $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:−\frac{\mathrm{1}}{\mathrm{6}}\left(\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }−\mathrm{x}\right)\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{4}−\mathrm{2x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\:+\frac{\mathrm{4}}{\mathrm{6}} \\ $$ $$=\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented byjohn santu last updated on 24/Mar/20

good

$${good} \\ $$

Commented bysakeefhasan05@gmail.com last updated on 24/Mar/20

∫_0 ^∞ (1/((x+(√(1+x^2 )))^n ))dx=(n/(n^2 −1))  common solution

$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left(\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)^{\mathrm{n}} }\mathrm{dx}=\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} −\mathrm{1}} \\ $$ $$\mathrm{common}\:\mathrm{solution} \\ $$

Commented bysakeefhasan05@gmail.com last updated on 24/Mar/20

comment pls

$$\mathrm{comment}\:\mathrm{pls} \\ $$

Commented byjohn santu last updated on 24/Mar/20

waw... it generally solution sir?

$${waw}...\:{it}\:{generally}\:{solution}\:{sir}? \\ $$

Commented bysakeefhasan05@gmail.com last updated on 24/Mar/20

yeah .n=3 check ((3/8)) pls try

$$\mathrm{yeah}\:.\mathrm{n}=\mathrm{3}\:\mathrm{check}\:\left(\frac{\mathrm{3}}{\mathrm{8}}\right)\:\mathrm{pls}\:\mathrm{try} \\ $$

Commented byjagoll last updated on 24/Mar/20

but n ≠ 1?

$$\mathrm{but}\:\mathrm{n}\:\neq\:\mathrm{1}? \\ $$

Commented bysakeefhasan05@gmail.com last updated on 24/Mar/20

sry (n/((n^2 −1)))  ,[n^2 −1≠0] so  (n≠1) & (n≠−1)

$$\mathrm{sry}\:\frac{\mathrm{n}}{\left(\mathrm{n}^{\mathrm{2}} −\mathrm{1}\right)}\:\:,\left[\mathrm{n}^{\mathrm{2}} −\mathrm{1}\neq\mathrm{0}\right]\:\mathrm{so}\:\:\left(\mathrm{n}\neq\mathrm{1}\right)\:\&\:\left(\mathrm{n}\neq−\mathrm{1}\right) \\ $$

Commented bysakeefhasan05@gmail.com last updated on 24/Mar/20

thank you  for direct me

$$\mathrm{thank}\:\mathrm{you}\:\:\mathrm{for}\:\mathrm{direct}\:\mathrm{me} \\ $$

Commented bymathmax by abdo last updated on 24/Mar/20

let A_n =∫_0 ^∞   (dx/((x+(√(1+x^2 )))^n ))  we do the changement x=sh(t) ⇒  A_n =∫_0 ^∞   ((ch(t))/((sh(t)+ch(t))^n ))dt =∫_0 ^∞   ((ch(t))/((((e^t −e^(−t) )/2)+((e^t  +e^(−t) )/2))^n ))dt    =∫_0 ^∞  e^(−nt) (((e^t  +e^(−t) )/2))dt =(1/2) ∫_0 ^∞  ( e^((−n+1)t)  +e^(−(n+1)t) )dt  =(1/2)[(1/(1−n))e^((1−n)t)  −(1/(n+1))e^(−(n+1)t) ]_0 ^(+∞)   =(1/2){−(1/(1−n))+(1/(n+1))} =(1/2)((1/(n+1))+(1/(n−1))) =(1/2)(((2n)/(n^2 −1))) ⇒  A_n =(n/(n^2 −1))   (n>1)  so  ∫_0 ^∞    (dx/((x+(√(1+x^2 )))^2 )) =(2/(2^2 −1)) =(2/3)

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{{n}} }\:\:{we}\:{do}\:{the}\:{changement}\:{x}={sh}\left({t}\right)\:\Rightarrow \\ $$ $${A}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ch}\left({t}\right)}{\left({sh}\left({t}\right)+{ch}\left({t}\right)\right)^{{n}} }{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ch}\left({t}\right)}{\left(\frac{{e}^{{t}} −{e}^{−{t}} }{\mathrm{2}}+\frac{{e}^{{t}} \:+{e}^{−{t}} }{\mathrm{2}}\right)^{{n}} }{dt}\:\: \\ $$ $$=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{nt}} \left(\frac{{e}^{{t}} \:+{e}^{−{t}} }{\mathrm{2}}\right){dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\infty} \:\left(\:{e}^{\left(−{n}+\mathrm{1}\right){t}} \:+{e}^{−\left({n}+\mathrm{1}\right){t}} \right){dt} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{1}−{n}}{e}^{\left(\mathrm{1}−{n}\right){t}} \:−\frac{\mathrm{1}}{{n}+\mathrm{1}}{e}^{−\left({n}+\mathrm{1}\right){t}} \right]_{\mathrm{0}} ^{+\infty} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\left\{−\frac{\mathrm{1}}{\mathrm{1}−{n}}+\frac{\mathrm{1}}{{n}+\mathrm{1}}\right\}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}−\mathrm{1}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{2}{n}}{{n}^{\mathrm{2}} −\mathrm{1}}\right)\:\Rightarrow \\ $$ $${A}_{{n}} =\frac{{n}}{{n}^{\mathrm{2}} −\mathrm{1}}\:\:\:\left({n}>\mathrm{1}\right)\:\:{so} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} }\:=\frac{\mathrm{2}}{\mathrm{2}^{\mathrm{2}} −\mathrm{1}}\:=\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented byjohn santu last updated on 24/Mar/20

thank you sir for your short cut

$${thank}\:{you}\:{sir}\:{for}\:{your}\:{short}\:{cut} \\ $$

Commented byjohn santu last updated on 24/Mar/20

indonesian sir

$${indonesian}\:{sir} \\ $$

Commented bymathmax by abdo last updated on 24/Mar/20

where are you from sir john...

$${where}\:{are}\:{you}\:{from}\:{sir}\:{john}... \\ $$

Commented bymathmax by abdo last updated on 24/Mar/20

aah good  sir ...

$${aah}\:{good}\:\:{sir}\:... \\ $$

Commented byjohn santu last updated on 25/Mar/20

why sir? if you where you   come sir?

$${why}\:{sir}?\:{if}\:{you}\:{where}\:{you}\: \\ $$ $${come}\:{sir}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com