Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 182891 by mathlove last updated on 16/Dec/22

∫_(0  ) ^∞ e^x ((sinmx)/x)dx=?

$$\int_{\mathrm{0}\:\:} ^{\infty} {e}^{{x}} \frac{{sinmx}}{{x}}{dx}=? \\ $$

Answered by dre23 last updated on 16/Dec/22

f(t)=∫_0 ^∞ e^(−x) .((sin(tx))/x)dx  f(0)=0  f′(t)=∫_0 ^∞ e^(−x) cos(xt)dx  =Re∫_0 ^∞ e^(−(1+it)x) dx,x>0  1+it=(√(1+t^2 ))e^(iarctan(t)) =(√(1+t^2 ))e^(ia(t))   let C=[0,R]∪Re^(iΩ) ,Ω∈[−a(t,)]∪z e^(−ia(t)) ,z∈[0,R]}  ∫_C e^(−x) cos(xt)dx=0,∀t>0 holomorphic Function  ∫_(Re^(iΩ(t)) ) e^(−x) cos(xt)dx=0  ⇔∫_0 ^∞ e^(−x) cos(xt)dx=Re(1−it)∫_0 ^∞ e^(−(1+it)(1−it)z) dz  =Re(1−it)∫_0 ^∞ e^(−(1+t^2 )z) dz.=(1/(1+t^2 ))  f′(t)=(1/(1+t^2 ))⇒f(t)=arctan(t)+c  f(0)=0⇒f(t)=arctan(t{  ∫_0 ^∞ e^(−x) .((sin(mx))/x)dx=f(m)=arctan(m),∀m≥0

$${f}\left({t}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} .\frac{{sin}\left({tx}\right)}{{x}}{dx} \\ $$ $${f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$ $${f}'\left({t}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {cos}\left({xt}\right){dx} \\ $$ $$={Re}\int_{\mathrm{0}} ^{\infty} {e}^{−\left(\mathrm{1}+{it}\right){x}} {dx},{x}>\mathrm{0} \\ $$ $$\mathrm{1}+{it}=\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }{e}^{{iarctan}\left({t}\right)} =\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }{e}^{{ia}\left({t}\right)} \\ $$ $$\left.{let}\:{C}=\left[\mathrm{0},{R}\right]\cup{Re}^{{i}\Omega} ,\Omega\in\left[−{a}\left({t},\right)\right]\cup{z}\:{e}^{−{ia}\left({t}\right)} ,{z}\in\left[\mathrm{0},{R}\right]\right\} \\ $$ $$\int_{{C}} {e}^{−{x}} {cos}\left({xt}\right){dx}=\mathrm{0},\forall{t}>\mathrm{0}\:{holomorphic}\:{Function} \\ $$ $$\int_{{Re}^{{i}\Omega\left({t}\right)} } {e}^{−{x}} {cos}\left({xt}\right){dx}=\mathrm{0} \\ $$ $$\Leftrightarrow\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} {cos}\left({xt}\right){dx}={Re}\left(\mathrm{1}−{it}\right)\int_{\mathrm{0}} ^{\infty} {e}^{−\left(\mathrm{1}+{it}\right)\left(\mathrm{1}−{it}\right){z}} {dz} \\ $$ $$={Re}\left(\mathrm{1}−{it}\right)\int_{\mathrm{0}} ^{\infty} {e}^{−\left(\mathrm{1}+{t}^{\mathrm{2}} \right){z}} {dz}.=\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$ $${f}'\left({t}\right)=\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\Rightarrow{f}\left({t}\right)={arctan}\left({t}\right)+{c} \\ $$ $${f}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow{f}\left({t}\right)={arctan}\left({t}\left\{\right.\right. \\ $$ $$\int_{\mathrm{0}} ^{\infty} {e}^{−{x}} .\frac{{sin}\left({mx}\right)}{{x}}{dx}={f}\left({m}\right)={arctan}\left({m}\right),\forall{m}\geqslant\mathrm{0} \\ $$ $$ \\ $$

Commented byMl last updated on 16/Dec/22

why you e^x =e^(−x)

$$\mathrm{why}\:\mathrm{you}\:\mathrm{e}^{\mathrm{x}} =\mathrm{e}^{−\mathrm{x}} \\ $$

Commented byPeace last updated on 16/Dec/22

intial ∫e^x ((sin(mx))/x)dx diverge

$${intial}\:\int{e}^{{x}} \frac{{sin}\left({mx}\right)}{{x}}{dx}\:{diverge} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com