Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 197132 by Erico last updated on 08/Sep/23

∫^( +∞) _( 0) (((ln(t+(√(1+t^2 ))))/t))^2 =(π^2 /2)

$$\underset{\:\mathrm{0}} {\int}^{\:+\infty} \left(\frac{\mathrm{ln}\left(\mathrm{t}+\sqrt{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\right)}{\mathrm{t}}\right)^{\mathrm{2}} =\frac{\pi^{\mathrm{2}} }{\mathrm{2}} \\ $$

Commented by mnjuly1970 last updated on 09/Sep/23

    ti tok agha sardool ..

$$\:\:\:\:{ti}\:{tok}\:{agha}\:{sardool}\:.. \\ $$

Answered by witcher3 last updated on 09/Sep/23

t=sh(x)  ∫_0 ^∞ ((x/(sh(x))))^2 ch(x)dx  =∫_0 ^∞ (x^2 /(sh^2 (x)))ch(x)=lim_((a,b)→(0,∞)) [−(x^2 /(sh(x)))]_a ^b +∫_0 ^∞ ((2x)/(sh(x)))dx  =2∫_0 ^∞ ((2x)/(e^x −e^(−x) ))dx  =∫_0 ^∞ ((4xe^(−x) )/(1−e^(−2x) ))dx  =4Σ_(n≥0) ∫_0 ^∞ xe^(−(1+2n)x) dx=Σ_(n≥0) (4/((1+2n)^2 ))  =4(ζ(2)−(1/4)ζ(2))=(π^2 /2)

$$\mathrm{t}=\mathrm{sh}\left(\mathrm{x}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{x}}{\mathrm{sh}\left(\mathrm{x}\right)}\right)^{\mathrm{2}} \mathrm{ch}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{sh}^{\mathrm{2}} \left(\mathrm{x}\right)}\mathrm{ch}\left(\mathrm{x}\right)=\underset{\left(\mathrm{a},\mathrm{b}\right)\rightarrow\left(\mathrm{0},\infty\right)} {\mathrm{lim}}\left[−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{sh}\left(\mathrm{x}\right)}\right]_{\mathrm{a}} ^{\mathrm{b}} +\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2x}}{\mathrm{sh}\left(\mathrm{x}\right)}\mathrm{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2x}}{\mathrm{e}^{\mathrm{x}} −\mathrm{e}^{−\mathrm{x}} }\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{4xe}^{−\mathrm{x}} }{\mathrm{1}−\mathrm{e}^{−\mathrm{2x}} }\mathrm{dx} \\ $$$$=\mathrm{4}\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\infty} \mathrm{xe}^{−\left(\mathrm{1}+\mathrm{2n}\right)\mathrm{x}} \mathrm{dx}=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{4}}{\left(\mathrm{1}+\mathrm{2n}\right)^{\mathrm{2}} } \\ $$$$=\mathrm{4}\left(\zeta\left(\mathrm{2}\right)−\frac{\mathrm{1}}{\mathrm{4}}\zeta\left(\mathrm{2}\right)\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com