Question Number 77464 by naka3546 last updated on 06/Jan/20 | ||
![]() | ||
$$\underset{\:\:\mathrm{0}} {\int}\:\overset{\frac{\pi}{\mathrm{2}}} {\:}\mathrm{ln}\:\left(\mathrm{2}\:\mathrm{cos}\:{x}\right)\:{dx}\:\:=\:\:? \\ $$ | ||
Commented bykaivan.ahmadi last updated on 06/Jan/20 | ||
![]() | ||
$${u}={ln}\left(\mathrm{2}{cosx}\right)\Rightarrow{du}=−{tgxdx} \\ $$ $${dv}={dx}\Rightarrow{v}={x} \\ $$ $${uv}−\int{vdu}={xln}\left(\mathrm{2}{cosx}\right)+\int{xtgxdx} \\ $$ $${now}\:{for}\:\int{xtgxdx} \\ $$ $${u}={tgx}\Rightarrow{du}=\left(\mathrm{1}+{tg}^{\mathrm{2}} {x}\right){dx} \\ $$ $${dv}={xdx}\Rightarrow{v}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$ $${uv}−\int{vdu}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{tgx}−\frac{\mathrm{1}}{\mathrm{2}}\int{x}^{\mathrm{2}} \left(\mathrm{1}+{tg}^{\mathrm{2}} {x}\right){dx}= \\ $$ $$\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{tgx}−\frac{\mathrm{1}}{\mathrm{2}}\int\left({x}^{\mathrm{2}} +{x}^{\mathrm{2}} {tg}^{\mathrm{2}} {x}\right){dx} \\ $$ $${so} \\ $$ $$ \\ $$ | ||
Commented byMJS last updated on 06/Jan/20 | ||
![]() | ||
$$\mathrm{sorry}\:\mathrm{but}\:\mathrm{this}\:\mathrm{is}\:\mathrm{wrong} \\ $$ $$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{using} \\ $$ $$\mathrm{elementary}\:\mathrm{calculus} \\ $$ | ||
Commented bykaivan.ahmadi last updated on 06/Jan/20 | ||
![]() | ||
$${if}\:{F}\left({x}\right)={xln}\left(\mathrm{2}{cosx}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} {tgx}−{x}+{tg}^{−\mathrm{1}} {x}\right) \\ $$ $${then} \\ $$ $${F}\:'\left({x}\right)={ln}\left(\mathrm{2}{cosx}\right) \\ $$ $${so}\:\int{ln}\left(\mathrm{2}{cosx}\right){dx}={F}\left({x}\right)+{C} \\ $$ | ||
Commented byMJS last updated on 06/Jan/20 | ||
![]() | ||
$$\mathrm{but} \\ $$ $$\frac{{d}}{{dx}}\left[{x}\mathrm{ln}\:\left(\mathrm{2cos}\:{x}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}\left({x}^{\mathrm{2}} \mathrm{tan}\:{x}\:−{x}+\mathrm{tan}\:{x}\right)\right]= \\ $$ $$=\mathrm{ln}\:\left(\mathrm{2cos}\:{x}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{tan}^{\mathrm{2}} \:{x}\:+\frac{{x}^{\mathrm{2}} }{\mathrm{cos}^{\mathrm{2}} \:{x}}\right) \\ $$ | ||
Commented bymathmax by abdo last updated on 06/Jan/20 | ||
![]() | ||
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{2}{cosx}\right){dx}\:=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\right){dx}\:{we}\:{have}\:{proved}\:{that} \\ $$ $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\right){dx}\:=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:\Rightarrow\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{2}{cosx}\right){dx}\:=\mathrm{0} \\ $$ | ||
Commented bymathmax by abdo last updated on 06/Jan/20 | ||
![]() | ||
$${let}\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({acosx}\right){dx}\:{with}\:{a}>\mathrm{0}\:{we}\:{have} \\ $$ $${f}^{'} \left({a}\right)\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cosx}}{{acosx}}{dx}\:=\frac{\pi}{\mathrm{2}{a}}\:\Rightarrow{f}\left({a}\right)\:=\frac{\pi}{\mathrm{2}}{ln}\left({a}\right)+{c} \\ $$ $${f}\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({cosx}\right){dx}\:=−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)={c}\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({acosx}\right){dx}\:=\frac{\pi}{\mathrm{2}}{ln}\left({a}\right)−\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$ $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{2}{cosx}\right){dx}\:=\mathrm{0} \\ $$ | ||
Commented bykaivan.ahmadi last updated on 06/Jan/20 | ||
![]() | ||
$${yes}\:{sir}\:{you}\:{are}\:{right}.{i}\:{find}\:{mistake}.{it}\:{has} \\ $$ $$\int{x}^{\mathrm{2}} {tg}^{\mathrm{2}} {xdx} \\ $$ $${can}\:{we}\:{solve}\:{it}? \\ $$ | ||
Answered by MJS last updated on 06/Jan/20 | ||
![]() | ||
$$\int\mathrm{ln}\:\left(\mathrm{2cos}\:{x}\right)\:{dx}= \\ $$ $$\:\:\:\:\:\left[{t}=−\mathrm{i}{x}\:\rightarrow\:{dx}=\mathrm{i}\:{dt}\right] \\ $$ $$=−\mathrm{i}\int{tdt}+\mathrm{i}\int\mathrm{ln}\:\left(\mathrm{e}^{\mathrm{2}{t}} +\mathrm{1}\right)\:{dt} \\ $$ $$\int\mathrm{ln}\:\left(\mathrm{e}^{\mathrm{2}{t}} +\mathrm{1}\right)\:{dt}= \\ $$ $$\:\:\:\:\:\left[{u}=−\mathrm{e}^{\mathrm{2}{t}} \:\rightarrow\:{dt}=−\frac{{dx}}{\mathrm{2e}^{\mathrm{2}{x}} }\right] \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{ln}\:\left(\mathrm{1}−{u}\right)}{{u}}{du}=−\frac{\mathrm{1}}{\mathrm{2}}\int−\frac{\mathrm{ln}\:\left(\mathrm{1}−{u}\right)}{{u}}{du}= \\ $$ $$=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Li}_{\mathrm{2}} \:{u} \\ $$ $$\mathrm{Li}_{\mathrm{2}} \:{x}\:\mathrm{is}\:\mathrm{the}\:\mathrm{dilogarithm}\:\mathrm{with}\:\mathrm{Li}_{\mathrm{2}} \:{x}\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}^{\mathrm{2}} } \\ $$ | ||
Answered by Kunal12588 last updated on 07/Jan/20 | ||
![]() | ||
$${I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left(\mathrm{2}\:{cos}\:{x}\right)\:{dx}\:\:\:\:\:\:\:\:\:.....\left(\mathrm{1}\right) \\ $$ $$\Rightarrow{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left(\mathrm{2}\:{cos}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right){dx} \\ $$ $$\Rightarrow{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left(\mathrm{2}\:{sin}\:{x}\right)\:{dx}\:\:.....\left(\mathrm{2}\right) \\ $$ $${adding}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{2}\right) \\ $$ $$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left(\mathrm{2}\:{sin}\:\mathrm{2}{x}\right)\:{dx} \\ $$ $$\:\mathrm{let}\:\:\mathrm{2}{x}\:=\:{t}\:\:\:\:\Rightarrow\begin{cases}{{x}\rightarrow\mathrm{0}\:\Rightarrow\:{t}\rightarrow\mathrm{0}}\\{{x}\rightarrow\:\frac{\pi}{\mathrm{2}}\:\Rightarrow\:{t}\rightarrow\pi}\end{cases} \\ $$ $$\:\Rightarrow{dx}=\frac{\mathrm{1}}{\mathrm{2}}{dt} \\ $$ $$\therefore\:\mathrm{2}{I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\pi} {log}\left(\mathrm{2}\:{sin}\:{t}\right)\:{dt}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\pi} {log}\left(\mathrm{2}\:{sin}\:{x}\right){dx} \\ $$ $$\Rightarrow\mathrm{2}{I}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left(\mathrm{2}\:{sin}\:{x}\right){dx} \\ $$ $$\Rightarrow\mathrm{2}{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left(\mathrm{2}\:{sin}\:\left(\frac{\pi}{\mathrm{2}}−{x}\right)\right){dx} \\ $$ $$\Rightarrow\mathrm{2}{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left(\mathrm{2}\:{cos}\:{x}\right){dx} \\ $$ $$\Rightarrow\mathrm{2}{I}={I} \\ $$ $$\Rightarrow{I}=\mathrm{0} \\ $$ $$\therefore\:\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left(\mathrm{2}\:{cos}\:{x}\right){dx}\:=\:\mathrm{0} \\ $$ | ||
Answered by Kunal12588 last updated on 07/Jan/20 | ||
![]() | ||
$${I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left({a}\:{cos}\:{x}\right){dx} \\ $$ $$\Rightarrow{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left({a}\:{sin}\:{x}\right){dx} \\ $$ $$\Rightarrow\mathrm{2}{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left({a}^{\mathrm{2}} \:{sin}\:{x}\:{cos}\:{x}\right){dx} \\ $$ $$\Rightarrow\mathrm{2}{I}=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left(\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\:{sin}\:\mathrm{2}{x}\right){dx} \\ $$ $$\Rightarrow\mathrm{2}{I}={log}\left(\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\right)\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {dx}+\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left({sin}\:\mathrm{2}{x}\right)\:{dx} \\ $$ $$\Rightarrow\mathrm{2}{I}=\frac{\pi}{\mathrm{2}}{log}\left(\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\pi} \:{log}\left({sin}\:{x}\right)\:{dx} \\ $$ $$\Rightarrow\mathrm{2}{I}=\frac{\pi}{\mathrm{2}}{log}\left(\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \:{log}\left({sin}\:{x}\right)\:{dx} \\ $$ $$\Rightarrow\mathrm{2}{I}=\frac{\pi}{\mathrm{2}}{log}\left(\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\right)+\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} \:{log}\left({cos}\:{x}\right)\:{dx} \\ $$ $$\Rightarrow\mathrm{2}{I}=\frac{\pi}{\mathrm{2}}{log}\left(\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\right)−\frac{\pi}{\mathrm{2}}{log}\left(\mathrm{2}\right) \\ $$ $$\Rightarrow{I}=\frac{\pi}{\mathrm{4}}{log}\left(\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\right)−\frac{\pi}{\mathrm{4}}{log}\left(\mathrm{2}\right) \\ $$ $$\Rightarrow{I}=\frac{\pi}{\mathrm{4}}{log}\left(\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\right)=\frac{\pi}{\mathrm{2}}{log}\left(\frac{{a}}{\mathrm{2}}\right) \\ $$ $${f}\left({a}\right)=\int_{\mathrm{0}} ^{\:\pi/\mathrm{2}} {log}\left({a}\:{cos}\:{x}\right)\:{dx}=\frac{\pi}{\mathrm{2}}{log}\left(\frac{{a}}{\mathrm{2}}\right) \\ $$ $${f}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{2}}{log}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\frac{\pi}{\mathrm{2}}{log}\left(\mathrm{2}\right) \\ $$ $${f}\left(\mathrm{2}\right)=\frac{\pi}{\mathrm{2}}{log}\left(\mathrm{1}\right)=\mathrm{0} \\ $$ $${f}\left(\mathrm{3}\right)=\frac{\pi}{\mathrm{2}}{log}\left(\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$ $${f}\left(\mathrm{4}\right)=\frac{\pi}{\mathrm{2}}{log}\left(\mathrm{2}\right) \\ $$ $$\vdots \\ $$ | ||