Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 156028 by mnjuly1970 last updated on 07/Oct/21

   Ω := ∫_0 ^( (π/2)) (√(sin(x))) ln(sin( x ))dx=?    m.n..

$$ \\ $$ $$\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \sqrt{{sin}\left({x}\right)}\:\mathrm{ln}\left({sin}\left(\:{x}\:\right)\right){dx}=? \\ $$ $$\:\:{m}.{n}.. \\ $$ $$ \\ $$

Answered by Ar Brandon last updated on 07/Oct/21

f(α)=∫_0 ^(π/2) sin^α xdx=(1/2)β(((α+1)/2), (1/2))=((Γ(((α+1)/2))(√π))/(2Γ((α/2)+1)))  f ′(α)=∫_0 ^(π/2) sin^α xln(sinx)dx=((√π)/2){((Γ((α/2)+1)Γ′(((α+1)/2))−Γ(((α+1)/2))Γ′((α/2)+1))/(Γ^2 ((α/2)+1)))}  f ′((1/2))=∫_0 ^(π/2) (√(sinx))ln(sinx)dx=((√π)/2){((Γ((5/4))Γ′((3/4))−Γ((3/4))Γ′((5/4)))/(Γ^2 ((5/4))))}                =((√π)/2){(((1/4)Γ((1/4))Γ((3/4))[ψ((3/4))−ψ((5/4))])/((1/(16))Γ^2 ((1/4))))}  ...

$${f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\alpha} {xdx}=\frac{\mathrm{1}}{\mathrm{2}}\beta\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\Gamma\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)\sqrt{\pi}}{\mathrm{2}\Gamma\left(\frac{\alpha}{\mathrm{2}}+\mathrm{1}\right)} \\ $$ $${f}\:'\left(\alpha\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\alpha} {x}\mathrm{ln}\left(\mathrm{sin}{x}\right){dx}=\frac{\sqrt{\pi}}{\mathrm{2}}\left\{\frac{\Gamma\left(\frac{\alpha}{\mathrm{2}}+\mathrm{1}\right)\Gamma'\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)−\Gamma\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)\Gamma'\left(\frac{\alpha}{\mathrm{2}}+\mathrm{1}\right)}{\Gamma^{\mathrm{2}} \left(\frac{\alpha}{\mathrm{2}}+\mathrm{1}\right)}\right\} \\ $$ $${f}\:'\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt{\mathrm{sin}{x}}\mathrm{ln}\left(\mathrm{sin}{x}\right){dx}=\frac{\sqrt{\pi}}{\mathrm{2}}\left\{\frac{\Gamma\left(\frac{\mathrm{5}}{\mathrm{4}}\right)\Gamma'\left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\Gamma'\left(\frac{\mathrm{5}}{\mathrm{4}}\right)}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{5}}{\mathrm{4}}\right)}\right\} \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\pi}}{\mathrm{2}}\left\{\frac{\frac{\mathrm{1}}{\mathrm{4}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\left[\psi\left(\frac{\mathrm{3}}{\mathrm{4}}\right)−\psi\left(\frac{\mathrm{5}}{\mathrm{4}}\right)\right]}{\frac{\mathrm{1}}{\mathrm{16}}\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}\right\} \\ $$ $$... \\ $$

Commented byAr Brandon last updated on 07/Oct/21

Γ(x)Γ(1−x)=(π/(sin(πx)))  ψ(s+1)=(1/s)+ψ(s)  ψ(x)−ψ(1−x)=−πcot(πx), x=(1/4)

$$\Gamma\left({x}\right)\Gamma\left(\mathrm{1}−{x}\right)=\frac{\pi}{\mathrm{sin}\left(\pi{x}\right)} \\ $$ $$\psi\left({s}+\mathrm{1}\right)=\frac{\mathrm{1}}{{s}}+\psi\left({s}\right) \\ $$ $$\psi\left({x}\right)−\psi\left(\mathrm{1}−{x}\right)=−\pi\mathrm{cot}\left(\pi{x}\right),\:{x}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Commented bymnjuly1970 last updated on 07/Oct/21

grateful mr brandon..

$${grateful}\:{mr}\:{brandon}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com