Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 185880 by cortano1 last updated on 29/Jan/23

  ∫_0 ^(π/2)  (((tan x))^(1/3) /((sin x+cos x)^2 )) dx=?

$$\:\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}}{\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }\:{dx}=? \\ $$

Commented byMJS_new last updated on 29/Jan/23

simply use t=((tan x))^(1/3)

$$\mathrm{simply}\:\mathrm{use}\:{t}=\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}} \\ $$

Commented bycortano1 last updated on 29/Jan/23

Answered by cortano1 last updated on 29/Jan/23

 I= ∫ (((tan x))^(1/3) /((sin x+cos x)^2 )) dx    = ∫ ((((tan x))^(1/3)  sec^2 x)/((tan x+1)^2 )) dx    = ∫ (u^(1/3) /((u+1)^2 )) du

$$\:{I}=\:\int\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}}{\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }\:{dx} \\ $$ $$\:\:=\:\int\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}\:\mathrm{sec}\:^{\mathrm{2}} {x}}{\left(\mathrm{tan}\:{x}+\mathrm{1}\right)^{\mathrm{2}} }\:{dx} \\ $$ $$\:\:=\:\int\:\frac{{u}^{\mathrm{1}/\mathrm{3}} }{\left({u}+\mathrm{1}\right)^{\mathrm{2}} }\:{du}\: \\ $$

Commented bycortano1 last updated on 29/Jan/23

it′s correct?

$${it}'{s}\:{correct}? \\ $$

Answered by MJS_new last updated on 29/Jan/23

∫_0 ^(π/2) (((tan x))^(1/3) /((sin x +cos x)))dx=       [t=((tan x))^(1/3)  → dx=3cos^2  x ((tan^2  x))^(1/3) dx]  =3∫_0 ^∞ (t^3 /((t^3 +1)^2 ))dt=       [Ostrogradski′s Method]  =[−(t/(t^3 +1))]_0 ^∞ +∫_0 ^∞ (dt/(t^3 +1))=  =0+[(1/6)ln (((t+1)^2 )/(t^2 −t+1)) +((√3)/3)arctan (((√3)(2t−1))/3)]_0 ^∞ =  =((2(√3))/9)π

$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}}{\left(\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}\right)}{dx}= \\ $$ $$\:\:\:\:\:\left[{t}=\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}\:\rightarrow\:{dx}=\mathrm{3cos}^{\mathrm{2}} \:{x}\:\sqrt[{\mathrm{3}}]{\mathrm{tan}^{\mathrm{2}} \:{x}}{dx}\right] \\ $$ $$=\mathrm{3}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{t}^{\mathrm{3}} }{\left({t}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} }{dt}= \\ $$ $$\:\:\:\:\:\left[\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}\right] \\ $$ $$=\left[−\frac{{t}}{{t}^{\mathrm{3}} +\mathrm{1}}\right]_{\mathrm{0}} ^{\infty} +\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}}{{t}^{\mathrm{3}} +\mathrm{1}}= \\ $$ $$=\mathrm{0}+\left[\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\frac{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }{{t}^{\mathrm{2}} −{t}+\mathrm{1}}\:+\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{t}−\mathrm{1}\right)}{\mathrm{3}}\right]_{\mathrm{0}} ^{\infty} = \\ $$ $$=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{9}}\pi \\ $$

Commented bycortano1 last updated on 30/Jan/23

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com