Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 52950 by gunawan last updated on 15/Jan/19

 ∫_( 0) ^(π/4)  ((sin x+cos x)/(3+sin 2x)) dx =

$$\:\underset{\:\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\frac{\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}{\mathrm{3}+\mathrm{sin}\:\mathrm{2}{x}}\:{dx}\:= \\ $$

Commented bymaxmathsup by imad last updated on 15/Jan/19

let A =∫_0 ^(π/4)  ((sinx +cosx)/(3 +sin(2x)))dx ⇒ A =∫_0 ^(π/4)  (((√2)sin(x+(π/4)))/(3+sin(2x)))dx  =_(x+(π/4)=u)   ∫_(π/4) ^(π/2)  (((√2)sin(u))/(3+sin(2(u−(π/4)))))du =(√2)∫_(π/4) ^(π/2)   ((sinu)/(3−cos(2u)))du  =(√2)∫_(π/4) ^(π/2)  ((sinu)/(3−(2cos^2 u−1)))du =(√2)∫_(π/4) ^(π/2)   ((sinu du)/(4−2cos^2 u))  =((√2)/2) ∫_(π/4) ^(π/2)   ((sinu)/(2−cos^2 u))du =_(cosu =t)   ((√2)/2) ∫_((√2)/2) ^0   ((−dt)/(2−t^2 )) =((√2)/2) ∫_0 ^((√2)/2)    (dt/(2−t^2 ))  =((√2)/2) ∫_0 ^((√2)/2)  ((1/((√2)+t)) +(1/((√2)−t)))dt  =(1/(2(√2))) ((√2)/2) [ln∣(((√2)+t)/((√2)−t))∣]_0 ^(1/(√2))   =(1/4){ln∣(((√2)+(1/(√2)))/((√2)−(1/(√2))))∣}=(1/4)ln((3/1))=((ln(3))/4)

$${let}\:{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{{sinx}\:+{cosx}}{\mathrm{3}\:+{sin}\left(\mathrm{2}{x}\right)}{dx}\:\Rightarrow\:{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \:\frac{\sqrt{\mathrm{2}}{sin}\left({x}+\frac{\pi}{\mathrm{4}}\right)}{\mathrm{3}+{sin}\left(\mathrm{2}{x}\right)}{dx} \\ $$ $$=_{{x}+\frac{\pi}{\mathrm{4}}={u}} \:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\sqrt{\mathrm{2}}{sin}\left({u}\right)}{\mathrm{3}+{sin}\left(\mathrm{2}\left({u}−\frac{\pi}{\mathrm{4}}\right)\right)}{du}\:=\sqrt{\mathrm{2}}\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sinu}}{\mathrm{3}−{cos}\left(\mathrm{2}{u}\right)}{du} \\ $$ $$=\sqrt{\mathrm{2}}\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sinu}}{\mathrm{3}−\left(\mathrm{2}{cos}^{\mathrm{2}} {u}−\mathrm{1}\right)}{du}\:=\sqrt{\mathrm{2}}\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sinu}\:{du}}{\mathrm{4}−\mathrm{2}{cos}^{\mathrm{2}} {u}} \\ $$ $$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sinu}}{\mathrm{2}−{cos}^{\mathrm{2}} {u}}{du}\:=_{{cosu}\:={t}} \:\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\int_{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} ^{\mathrm{0}} \:\:\frac{−{dt}}{\mathrm{2}−{t}^{\mathrm{2}} }\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \:\:\:\frac{{dt}}{\mathrm{2}−{t}^{\mathrm{2}} } \\ $$ $$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \:\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}+{t}}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}−{t}}\right){dt}\:\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\left[{ln}\mid\frac{\sqrt{\mathrm{2}}+{t}}{\sqrt{\mathrm{2}}−{t}}\mid\right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{4}}\left\{{ln}\mid\frac{\sqrt{\mathrm{2}}+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}}{\sqrt{\mathrm{2}}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}}\mid\right\}=\frac{\mathrm{1}}{\mathrm{4}}{ln}\left(\frac{\mathrm{3}}{\mathrm{1}}\right)=\frac{{ln}\left(\mathrm{3}\right)}{\mathrm{4}} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19

∫_0 ^(π/4) ((d(sinx−cosx))/(4−1+sin2x))  ∫_0 ^(π/4) ((d(sinx−cosx))/(4−(sinx−cosx)^2 ))  [formula ∫(dx/(a^2 −x^2 ))dx=(1/(2a))ln(((a+x)/(a−x)))]  (1/(2×2))∣ln{((2+(sinx−cosx))/(2−(sinx−cosx)))}∣_0 ^(π/4)   (1/4)[ln(((2+0)/(2−0)))−ln(((2+0−1)/(2−0+1)))]  =(1/4)[0−ln1+ln3]  so answer is =((ln3)/4)  pls check...

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{d}\left({sinx}−{cosx}\right)}{\mathrm{4}−\mathrm{1}+{sin}\mathrm{2}{x}} \\ $$ $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{d}\left({sinx}−{cosx}\right)}{\mathrm{4}−\left({sinx}−{cosx}\right)^{\mathrm{2}} }\:\:\left[{formula}\:\int\frac{{dx}}{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}{a}}{ln}\left(\frac{{a}+{x}}{{a}−{x}}\right)\right] \\ $$ $$\frac{\mathrm{1}}{\mathrm{2}×\mathrm{2}}\mid{ln}\left\{\frac{\mathrm{2}+\left({sinx}−{cosx}\right)}{\mathrm{2}−\left({sinx}−{cosx}\right)}\right\}\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \\ $$ $$\frac{\mathrm{1}}{\mathrm{4}}\left[{ln}\left(\frac{\mathrm{2}+\mathrm{0}}{\mathrm{2}−\mathrm{0}}\right)−{ln}\left(\frac{\mathrm{2}+\mathrm{0}−\mathrm{1}}{\mathrm{2}−\mathrm{0}+\mathrm{1}}\right)\right] \\ $$ $$=\frac{\mathrm{1}}{\mathrm{4}}\left[\mathrm{0}−{ln}\mathrm{1}+{ln}\mathrm{3}\right] \\ $$ $${so}\:{answer}\:{is}\:=\frac{{ln}\mathrm{3}}{\mathrm{4}}\:\:{pls}\:{check}... \\ $$

Commented bygunawan last updated on 16/Jan/19

Yes Sir, nice solution

$$\mathrm{Yes}\:\mathrm{Sir},\:\mathrm{nice}\:\mathrm{solution} \\ $$

Commented bygunawan last updated on 16/Jan/19

Yes Sir, nice solution

$$\mathrm{Yes}\:\mathrm{Sir},\:\mathrm{nice}\:\mathrm{solution} \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 16/Jan/19

thank you...

$${thank}\:{you}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com