Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123552 by Lordose last updated on 26/Nov/20

∫_( 0) ^( (π/4)) tan^n (x)dx

$$\int_{\:\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \mathrm{tan}^{\mathrm{n}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$

Answered by Adeleke last updated on 26/Nov/20

Answered by TANMAY PANACEA last updated on 26/Nov/20

I_n =∫_0 ^(π/4) tan^(n−2) x(sec^2 x−1)dx  =∫_0 ^(π/4) tan^(n−2) x×d(tanx)−I_(n−2)   =∣((tan^(n−1) x)/(n−1))∣_0 ^(π/4) −I_(n−2)   =(1/(n−1))−I_(n−2)   I_n =(1/(n−1))−I_(n−2)

$${I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tan}^{{n}−\mathrm{2}} {x}\left({sec}^{\mathrm{2}} {x}−\mathrm{1}\right){dx} \\ $$ $$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tan}^{{n}−\mathrm{2}} {x}×{d}\left({tanx}\right)−{I}_{{n}−\mathrm{2}} \\ $$ $$=\mid\frac{{tan}^{{n}−\mathrm{1}} {x}}{{n}−\mathrm{1}}\mid_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} −{I}_{{n}−\mathrm{2}} \\ $$ $$=\frac{\mathrm{1}}{{n}−\mathrm{1}}−{I}_{{n}−\mathrm{2}} \\ $$ $${I}_{{n}} =\frac{\mathrm{1}}{{n}−\mathrm{1}}−{I}_{{n}−\mathrm{2}} \\ $$

Commented bypeter frank last updated on 26/Nov/20

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Answered by Dwaipayan Shikari last updated on 26/Nov/20

If it was∫_0 ^(π/2) tan^n x dx  then we can get a closed form  ∫_0 ^(π/2) sin^n x cos^(−n) x dx  =(1/2)∫_0 ^1 t^((n/2)−(1/2)) (1−t)^(((−n)/2)−(1/2)) dt                sin^2 x=t  =(1/2) ((Γ((n/2)+(1/2))Γ((1/2)−(n/2)))/(Γ(1)))=(π/(2sin(((nπ)/2)+(π/2))))  ∫_0 ^(π/4) tan^p x dx =∫_0 ^1 (t^p /(t^2 +1))dt                  =∫_0 ^1 t^p Σ_(n=0) ^∞ (−1)^n t^(2n) =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 t^(2n+p) dt=Σ_(n=0) ^∞ (−1)^n (1/(2n+p+1))

$${If}\:{it}\:{was}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {tan}^{{n}} {x}\:{dx} \\ $$ $${then}\:{we}\:{can}\:{get}\:{a}\:{closed}\:{form} \\ $$ $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {x}\:{cos}^{−{n}} {x}\:{dx} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\frac{{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{t}\right)^{\frac{−{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}} {dt}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{sin}^{\mathrm{2}} {x}={t} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\Gamma\left(\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{{n}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{1}\right)}=\frac{\pi}{\mathrm{2}{sin}\left(\frac{{n}\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{2}}\right)} \\ $$ $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tan}^{{p}} {x}\:{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{p}} }{{t}^{\mathrm{2}} +\mathrm{1}}{dt}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$ $$=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{p}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {t}^{\mathrm{2}{n}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}{n}+{p}} {dt}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{1}}{\mathrm{2}{n}+{p}+\mathrm{1}} \\ $$

Answered by mnjuly1970 last updated on 26/Nov/20

Ω=^(tan(x)=y) ∫_0 ^( 1) ((y^n dy)/(1+y^2 ))=∫_0 ^( 1)  ((y^n −y^(n+2) )/(1−y^4 ))dy    =(1/4)∫_0 ^( 1)  ((t^((n−3)/4)  −t^((n−1)/4) )/(1−t))dt   =(1/4)(H_((n−1)/4) −H_((n−3)/4) )   =(1/4)(ψ((n/4)+(3/4))−ψ((n/4)+(1/4))) ✓

$$\Omega\overset{{tan}\left({x}\right)={y}} {=}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{y}^{{n}} {dy}}{\mathrm{1}+{y}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{y}^{{n}} −{y}^{{n}+\mathrm{2}} }{\mathrm{1}−{y}^{\mathrm{4}} }{dy} \\ $$ $$\:\:=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{t}^{\frac{{n}−\mathrm{3}}{\mathrm{4}}} \:−{t}^{\frac{{n}−\mathrm{1}}{\mathrm{4}}} }{\mathrm{1}−{t}}{dt} \\ $$ $$\:=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{H}_{\frac{{n}−\mathrm{1}}{\mathrm{4}}} −\mathrm{H}_{\frac{{n}−\mathrm{3}}{\mathrm{4}}} \right) \\ $$ $$\:=\frac{\mathrm{1}}{\mathrm{4}}\left(\psi\left(\frac{{n}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}\right)−\psi\left(\frac{{n}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}\right)\right)\:\checkmark \\ $$ $$ \\ $$ $$ \\ $$ $$\: \\ $$ $$\:\: \\ $$ $$\: \\ $$

Commented byDwaipayan Shikari last updated on 26/Nov/20

∫_0 ^(π/4) tan^4 x dx=(1/4)(ψ(1+(3/4))−ψ(1+(1/4)))                            =(1/4)(ψ((3/4))+(4/3)−ψ((1/4))−4)                           = (1/4)(πcot((π/4))−(8/3))=(π/4)−(2/3)

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tan}^{\mathrm{4}} {x}\:{dx}=\frac{\mathrm{1}}{\mathrm{4}}\left(\psi\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{4}}\right)−\psi\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\right)\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\left(\psi\left(\frac{\mathrm{3}}{\mathrm{4}}\right)+\frac{\mathrm{4}}{\mathrm{3}}−\psi\left(\frac{\mathrm{1}}{\mathrm{4}}\right)−\mathrm{4}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left(\pi{cot}\left(\frac{\pi}{\mathrm{4}}\right)−\frac{\mathrm{8}}{\mathrm{3}}\right)=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Commented byLordose last updated on 02/Dec/20

Exactly

$$\mathrm{Exactly} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com