Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 87861 by Rio Michael last updated on 06/Apr/20

∫_0 ^(π/4)  tanh 2x dx

$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{4}}} {\int}}\:\mathrm{tanh}\:\mathrm{2}{x}\:{dx} \\ $$

Commented byMJS last updated on 06/Apr/20

tanh 2x =((e^(4x) −1)/(e^(4x) +1))  ∫tanh 2x dx=       [t=e^(4x)  → dx=(dt/(4e^(4x) ))]  =(1/4)∫((t−1)/(t(t+1)))dt=(1/2)∫(dt/(t+1))−(1/4)∫(dt/t)=  =(1/2)ln (t+1) −(1/4)ln t =−x+(1/2)ln (e^(4x) +1) +C

$$\mathrm{tanh}\:\mathrm{2}{x}\:=\frac{\mathrm{e}^{\mathrm{4}{x}} −\mathrm{1}}{\mathrm{e}^{\mathrm{4}{x}} +\mathrm{1}} \\ $$ $$\int\mathrm{tanh}\:\mathrm{2}{x}\:{dx}= \\ $$ $$\:\:\:\:\:\left[{t}=\mathrm{e}^{\mathrm{4}{x}} \:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{4e}^{\mathrm{4}{x}} }\right] \\ $$ $$=\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{t}−\mathrm{1}}{{t}\left({t}+\mathrm{1}\right)}{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{dt}}{{t}}= \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({t}+\mathrm{1}\right)\:−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\:{t}\:=−{x}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left(\mathrm{e}^{\mathrm{4}{x}} +\mathrm{1}\right)\:+{C} \\ $$

Commented byRio Michael last updated on 06/Apr/20

 sir can we use ′′ integration by parts′′?

$$\:\mathrm{sir}\:\mathrm{can}\:\mathrm{we}\:\mathrm{use}\:''\:\boldsymbol{\mathrm{integration}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{parts}}''? \\ $$

Commented byMJS last updated on 07/Apr/20

I don′t think that would be easier

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{that}\:\mathrm{would}\:\mathrm{be}\:\mathrm{easier} \\ $$

Commented byRio Michael last updated on 07/Apr/20

i will try it out sir

$$\mathrm{i}\:\mathrm{will}\:\mathrm{try}\:\mathrm{it}\:\mathrm{out}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com