Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 140930 by bramlexs22 last updated on 14/May/21

∫_0 ^π  (dx/( (√2) −cos x))

$$\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}}\:−\mathrm{cos}\:\mathrm{x}} \\ $$

Answered by Dwaipayan Shikari last updated on 14/May/21

2∫_0 ^∞ (dt/( (√2)−((1−t^2 )/(1+t^2 )))).(1/(1+t^2 ))    t=tan(x/2)  =2∫_0 ^∞ (dt/( (√2)t^2 +(√2)−1+t^2 ))dt=(1/( (√2)+1))∫_(−∞) ^∞ (dt/(t^2 +(((√2)−1)/( (√2)+1))))dt  =(1/( (√2)+1)).(√((((√2)+1)/( (√2)−1))[)) tan^(−1) (t(√(((√2)+1)/( (√2)−1))))]_(−∞) ^∞ dx  =π

$$\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\:\sqrt{\mathrm{2}}−\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }}.\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\:\:\:\:{t}={tan}\frac{{x}}{\mathrm{2}} \\ $$ $$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\:\sqrt{\mathrm{2}}{t}^{\mathrm{2}} +\sqrt{\mathrm{2}}−\mathrm{1}+{t}^{\mathrm{2}} }{dt}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}\int_{−\infty} ^{\infty} \frac{{dt}}{{t}^{\mathrm{2}} +\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}}{dt} \\ $$ $$\left.=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}.\sqrt{\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}\left[\right.}\:{tan}^{−\mathrm{1}} \left({t}\sqrt{\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}}\right)\right]_{−\infty} ^{\infty} {dx} \\ $$ $$=\pi \\ $$

Commented bybramlexs22 last updated on 14/May/21

Weirrstrass substitution

$$\mathrm{Weirrstrass}\:\mathrm{substitution} \\ $$

Commented byDwaipayan Shikari last updated on 14/May/21

yes!

$${yes}! \\ $$

Answered by mathmax by abdo last updated on 14/May/21

I=∫_0 ^π  (dx/( (√2)−cosx)) we do the changement tan((x/2))=t ⇒  I =∫_0 ^∞   ((2dt)/((1+t^2 )((√2)−((1−t^2 )/(1+t^2 ))))) =2∫_0 ^∞  (dt/( (√2)+(√2)t^2 −1+t^2 ))  =2∫_0 ^∞  (dt/((1+(√2))t^2  +(√2)−1)) =(2/(1+(√2)))∫_0 ^∞  (dt/(t^2  +(((√2)−1)/( (√2)+1))))  =(2/(1+(√2)))∫_0 ^∞  (dt/(t^2  +3−2(√2))) =_(t=(√(3−2(√2)))u)    (2/(1+(√2))) ∫_0 ^∞   (((√(3−2(√2)))du)/((3−2(√2))(1+u^2 )))  =(2/((1+(√2))(√(3−2(√2)))))[arctanu]_0 ^∞  =(π/((1+(√2))(√(3−2(√2)))))

$$\mathrm{I}=\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}}−\mathrm{cosx}}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{tan}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)=\mathrm{t}\:\Rightarrow \\ $$ $$\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2dt}}{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\left(\sqrt{\mathrm{2}}−\frac{\mathrm{1}−\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\right)}\:=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{dt}}{\:\sqrt{\mathrm{2}}+\sqrt{\mathrm{2}}\mathrm{t}^{\mathrm{2}} −\mathrm{1}+\mathrm{t}^{\mathrm{2}} } \\ $$ $$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{dt}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\mathrm{t}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}−\mathrm{1}}\:=\frac{\mathrm{2}}{\mathrm{1}+\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} \:+\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}} \\ $$ $$=\frac{\mathrm{2}}{\mathrm{1}+\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}\:=_{\mathrm{t}=\sqrt{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}\mathrm{u}} \:\:\:\frac{\mathrm{2}}{\mathrm{1}+\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\sqrt{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}\mathrm{du}}{\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right)\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)} \\ $$ $$=\frac{\mathrm{2}}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}}\left[\mathrm{arctanu}\right]_{\mathrm{0}} ^{\infty} \:=\frac{\pi}{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\sqrt{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}} \\ $$

Commented bymathmax by abdo last updated on 14/May/21

but  (√(3−2(√2)))=(√2)−1 ⇒ I =(π/(((√2)−1)((√2)+1))) =π

$$\mathrm{but}\:\:\sqrt{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}=\sqrt{\mathrm{2}}−\mathrm{1}\:\Rightarrow\:\mathrm{I}\:=\frac{\pi}{\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)}\:=\pi \\ $$ $$ \\ $$

Answered by iloveisrael last updated on 14/May/21

 R=∫_0 ^π  (dx/(a−cos x)) ; a>1  put μ = tan (x/2)    R=∫_0 ^π  ((1+μ^2 )/(a+aμ^2 −1+μ^2 )) . (2/(1+μ^2 )) dμ   (∗) a−1+(1+a)μ^2  ; set ((a−1)/(a+1)) = p^2    and μ=pu    R= (2/(a+1)) ∫_0 ^(  ∞)  (p/(p^2 (1+u^2 ))) du   R= (2/( (√(a^2 −1)))) [ arctan  u ] _0^∞    R= (2/( (√(a^2 −1)))) .(π/2) = (π/( (√(a^2 −1))))   R= (π/( (√(((√2))^2 −1)))) = π

$$\:{R}=\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{{dx}}{{a}−\mathrm{cos}\:{x}}\:;\:{a}>\mathrm{1} \\ $$ $${put}\:\mu\:=\:\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\: \\ $$ $$\:{R}=\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{\mathrm{1}+\mu^{\mathrm{2}} }{{a}+{a}\mu^{\mathrm{2}} −\mathrm{1}+\mu^{\mathrm{2}} }\:.\:\frac{\mathrm{2}}{\mathrm{1}+\mu^{\mathrm{2}} }\:{d}\mu \\ $$ $$\:\left(\ast\right)\:{a}−\mathrm{1}+\left(\mathrm{1}+{a}\right)\mu^{\mathrm{2}} \:;\:{set}\:\frac{{a}−\mathrm{1}}{{a}+\mathrm{1}}\:=\:{p}^{\mathrm{2}} \\ $$ $$\:{and}\:\mu={pu}\: \\ $$ $$\:{R}=\:\frac{\mathrm{2}}{{a}+\mathrm{1}}\:\underset{\mathrm{0}} {\overset{\:\:\infty} {\int}}\:\frac{{p}}{{p}^{\mathrm{2}} \left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:{du} \\ $$ $$\:{R}=\:\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\:\left[\:\mathrm{arctan}\:\:{u}\:\right]\:_{\mathrm{0}} ^{\infty} \\ $$ $$\:{R}=\:\frac{\mathrm{2}}{\:\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}}\:.\frac{\pi}{\mathrm{2}}\:=\:\frac{\pi}{\:\sqrt{{a}^{\mathrm{2}} −\mathrm{1}}} \\ $$ $$\:{R}=\:\frac{\pi}{\:\sqrt{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} −\mathrm{1}}}\:=\:\pi\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com